Python

 Computer >> コンピューター >  >> プログラミング >> Python
  1. Pythonの線形代数で行列の無限大ノルムを返す

    線形代数で行列またはベクトルのノルムを返すには、PythonNumpyのLA.norm()メソッドを使用します。最初のパラメーターxは入力配列です。軸がNoneの場合、ordがNoneでない限り、xは1-Dまたは2-Dである必要があります。 axisとordの両方がNoneの場合、x.ravelの2ノルムが返されます。 2番目のパラメーター、またはノルムの順序。 infは、numpyのinfオブジェクトを意味します。デフォルトはNoneです。 3番目のパラメーター軸は、整数の場合、ベクトルノルムを計算するためのxの軸を指定します。 axisが2タプルの場合、2次元行列を保持する軸を指定し、こ

  2. Pythonの線形代数で行列の負の無限大ノルムを返す

    線形代数で行列またはベクトルのノルムを返すには、PythonNumpyのLA.norm()メソッドを使用します。最初のパラメーターxは入力配列です。軸がNoneの場合、ordがNoneでない限り、xは1-Dまたは2-Dである必要があります。 axisとordの両方がNoneの場合、x.ravelの2ノルムが返されます。 2番目のパラメーター、またはノルムの順序。 infは、numpyのinfオブジェクトを意味します。デフォルトはNoneです。 3番目のパラメーター軸は、整数の場合、ベクトルノルムを計算するためのxの軸を指定します。 axisが2タプルの場合、2次元行列を保持する軸を指定し、こ

  3. Pythonで線形代数の行列の条件数を計算する

    線形代数の行列の条件数を計算するには、Pythonでnumpy.linalg.cond()メソッドを使用します。このメソッドは、pの値に応じて、7つの異なるノルムのいずれかを使用して条件数を返すことができます。 行列の条件数を返します。無限かもしれません。 xの条件数は、xのノルムにxの逆数のノルムを掛けたものとして定義されます。ノルムは、通常のL2ノルム、または他の多くの行列ノルムの1つにすることができます。最初のパラメーターは、条件数が求められる行列であるxです。 2番目のパラメーターは、条件数の計算で使用されるノルムの次数であるpです。 ステップ まず、必要なライブラリをインポートし

  4. Pythonで異なる次元の2つの配列のクロネッカー積を取得します

    次元が異なる2つの配列のクロネッカー積を取得するには、Python Numpyのnumpy.kron()メソッドを使用します。最初の配列によってスケーリングされた2番目の配列のブロックで構成される複合配列であるクロネッカー積を計算します この関数は、aとbの次元数が同じであると想定し、必要に応じて、最小の次元の前に1を追加します。 a.shape =(r0、r1、..、rN)およびb.shape =(s0、s1、...、sN)の場合、Kronecker製品の形状は(r0 * s0、r1 * s1、...、rN)になります。 * SN)。要素は、要素fromaとbの積であり、-によって明示的に

  5. Pythonで2つの1次元配列のクロネッカー積を取得します

    2つの1D配列のクロネッカー積を取得するには、Python Numpyのnumpy.kron()メソッドを使用します。最初の配列によってスケーリングされた2番目の配列のブロックで構成される複合配列であるクロネッカー積を計算します。 この関数は、aとbの次元数が同じであると想定し、必要に応じて最小の次元の前に1を追加します。 a.shape =(r0、r1、..、rN)およびb.shape =(s0、s1、...、sN)の場合、クロネッカー積は形状(r0 * s0、r1 * s1、...、 rN * SN)。要素は、aとbの要素の積であり、-によって明示的に編成されています。 kron(a,b

  6. Laguerreシリーズを統合し、Pythonでの統合の順序を設定します

    Laguerreシリーズを統合するには、Pythonでlaguerre.lagint()メソッドを使用します。このメソッドは、軸に沿ってlbndからm回積分されたLaguerre系列係数cを返します。各反復で、結果の系列にsclが乗算され、積分定数kが追加されます。スケーリング係数は、変数の線形変化で使用するためのものです。 最初のパラメーターcは、Laguerre系列係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します.2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1)。 3番目のパ

  7. Laguerreシリーズを統合し、Pythonで統合定数を設定します

    Laguerreシリーズを統合するには、Pythonでlaguerre.lagint()メソッドを使用します。このメソッドは、軸に沿ってlbndからm回積分されたLaguerre系列係数cを返します。各反復で、結果の系列にsclが乗算され、積分定数kが追加されます。スケーリング係数は、変数の線形変化で使用するためのものです。 最初のパラメーターcは、Laguerre系列係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します.2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1)。 3番目のパ

  8. Pythonの特定の軸上で多次元係数を持つエルミート級数を区別する

    Hermiteシリーズを区別するには、Pythonでhermite.hermder()メソッドを使用します。最初のパラメーターは、エルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数

  9. Pythonの軸1で多次元係数を持つエルミート級数を微分する

    Hermiteシリーズを区別するには、Pythonでhermite.hermder()メソッドを使用します。最初のパラメーターは、エルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1) 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果は、scl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数

  10. エルミート系列を微分し、導関数を設定し、Pythonで各微分にスカラーを乗算します

    Hermiteシリーズを区別するには、Pythonでhermite.hermder()メソッドを使用します。最初のパラメーターは、エルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数

  11. Pythonでラゲール多項式とx、y複素数の点の配列の疑似ファンデルモンド行列を生成します

    ラゲール多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthelaguerre.lagvander2d()を使用します。このメソッドは、疑似ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するラゲール多項式の次数です。 dtypeは、変換されたxと同じになります。 パラメータx、yは、点の配列を返します。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1-D配列に変換されます。パラメータdegは、[x

  12. エルミートシリーズを統合し、Pythonでの統合の順序を設定します

    Hermiteシリーズを統合するには、Pythonでhermite.hermint()メソッドを使用します。最初のパラメーター、cはエルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1)。 3番目のパラメーターkは積分定数です。 lbndの最初の積分の値はリストの最初の値であり、lbndの2番目の積分の値は2番目の値です。k==[](デフォルト)の場合、すべての定数はゼロに設定されます。 m ==1の場合、リストの代わりに

  13. Laguerreシリーズを統合し、Pythonで積分の下限を設定します

    Laguerreシリーズを統合するには、Pythonでlaguerre.lagint()メソッドを使用します。このメソッドは、軸に沿ってlbndからm回積分されたLaguerre系列係数cを返します。各反復で、結果の系列にsclが乗算され、積分定数kが追加されます。スケーリング係数は、変数の線形変化で使用するためのものです。 最初のパラメーターcは、Laguerre系列係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します.2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1) 3番目のパ

  14. 積分定数がPythonに追加される前に、Laguerreシリーズを積分し、結果にスカラーを乗算します

    Laguerreシリーズを統合するには、Pythonでlaguerre.lagint()メソッドを使用します。このメソッドは、軸に沿ってlbndからm回積分されたLaguerre系列係数cを返します。各反復で、結果の系列にsclが乗算され、積分定数kが追加されます。スケーリング係数は、変数の線形変化で使用するためのものです。 最初のパラメーターcは、Laguerre系列係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します.2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1)。 3番目のパ

  15. Pythonのポイント(x、y、z)で3Dエルミートシリーズを評価する

    ポイント(x、y、z)で3Dエルミート系列を評価するには、PythonNumpyのhermite.hermval3d()メソッドを使用します。このメソッドは、x、y、およびzからの対応する値のトリプルで形成された点の多次元多項式の値を返します。最初のパラメーターはx、y、zです。 3次元系列は、点(x、y、z)で評価されます。ここで、x、y、およびzは同じ形状である必要があります。 x、y、orzのいずれかがリストまたはタプルの場合、最初にndarrayに変換されます。それ以外の場合は変更されず、anndarrayでない場合は、スカラーとして扱われます。 2番目のパラメーターCは、multi

  16. Pythonの係数の4D配列を使用して、点(x、y、z)で3Dエルミート級数を評価します

    ポイント(x、y、z)で3Dエルミート系列を評価するには、PythonNumpyのhermite.hermval3d()メソッドを使用します。このメソッドは、x、y、およびzからの対応する値のトリプルで形成された点の多次元多項式の値を返します。最初のパラメーターはx、y、zです。 3次元系列は、点(x、y、z)で評価されます。ここで、x、y、およびzは同じ形状である必要があります。 x、y、orzのいずれかがリストまたはタプルの場合、最初にndarrayに変換されます。それ以外の場合は変更されず、anndarrayでない場合は、スカラーとして扱われます。 2番目のパラメーターCは、multi

  17. Pythonで係数の1D配列を使用して、点(x、y)で2次元エルミート級数を評価します

    ポイント(x、y)で2Dエルミート系列を評価するには、PythonNumpyのhermite.hermval2d()メソッドを使用します。このメソッドは、xとyからの対応する値のペアで形成された点での2次元多項式の値を返します。 最初のパラメーターはx、yです。 2次元系列は、xとymustが同じ形状である点(x、y)で評価されます。 xまたはyがリストまたはタプルの場合、最初にndarrayに変換されます。それ以外の場合は変更されず、ndarrayでない場合は、スカラーとして扱われます。 2番目のパラメーターCは、多次数i、jの項の係数がc [i、j]に含まれるように順序付けられた係数の配

  18. Pythonの係数の2D配列を使用して、点(x、y、z)で3Dエルミート級数を評価します

    ポイント(x、y、z)で3Dエルミート系列を評価するには、PythonNumpyのhermite.hermval3d()メソッドを使用します。このメソッドは、x、y、およびzからの対応する値のトリプルで形成された点の多次元多項式の値を返します。 最初のパラメーターはx、y、zです。 3次元系列は、点(x、y、z)で評価されます。ここで、x、y、およびzは同じ形状である必要があります。 x、y、またはzのいずれかがリストまたはタプルの場合、最初にanndarrayに変換されます。それ以外の場合は変更されず、ndarrayでない場合は、スカラーとして扱われます。 2番目のパラメーターCは、mu

  19. エルミート級数を積分し、Pythonで積分の下限を設定します

    Hermiteシリーズを統合するには、Pythonでhermite.hermint()メソッドを使用します。最初のパラメーター、cはエルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1)。 3番目のパラメーターは、積分定数です。 lbndの最初の積分の値はリストの最初の値であり、lbndの2番目の積分の値は2番目の値です。k==[](デフォルト)の場合、すべての定数はゼロに設定されます。 m ==1の場合、リストの代わり

  20. エルミート級数を積分し、Pythonで積分定数を追加する前に、結果にスカラーを乗算します

    Hermiteシリーズを統合するには、Pythonでhermite.hermint()メソッドを使用します。最初のパラメーター、cはエルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは積分の順序であり、正でなければなりません。 (デフォルト:1)。 3番目のパラメーターkは積分定数です。 lbndの最初の積分の値はリストの最初の値であり、lbndの2番目の積分の値は2番目の値です。k==[](デフォルト)の場合、すべての定数はゼロに設定されます。 m ==1の場合、リストの代わりに

Total 8994 -コンピューター  FirstPage PreviousPage NextPage LastPage CurrentPage:432/450  20-コンピューター/Page Goto:1 426 427 428 429 430 431 432 433 434 435 436 437 438