Python
 Computer >> コンピューター >  >> プログラミング >> Python

Pythonで点座標の複雑な配列を使用して、指定された次数の疑似ファンデルモンド行列を生成します


与えられた次数の疑似ファンデルモンド行列を生成するには、Python Numpyでpolynomial.polyvander2()を使用します。このメソッドは、度度とサンプルポイント(x、y)の疑似ファンデルモンド行列を返します。パラメータxとyは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg]の形式の最大度のリストです。

ステップ

まず、必要なライブラリをインポートします-

import numpy as np
from numpy.polynomial.polynomial import polyvander2d

numpy.array()メソッドを使用して、すべて同じ形状の点座標の配列を作成します-

x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])

配列を表示する-

print("Array1...\n",x)
print("\nArray2...\n",y)

データ型を表示する-

print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

両方のアレイの寸法を確認してください-

print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

両方のアレイの形状を確認してください-

print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

与えられた次数の疑似ファンデルモンド行列を生成するには、Python Numpyでpolynomial.polyvander2()を使用します-

x_deg, y_deg = 2, 3
print("\nResult...\n",polyvander2d(x,y, [x_deg, y_deg]))

import numpy as np
from numpy.polynomial.polynomial import polyvander2d

# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])

# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)

# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

# To generate a Pseudo-Vandermonde matrix of given degree, use the polynomial.polyvander2() in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",polyvander2d(x,y, [x_deg, y_deg]))

出力

Array1...
   [-2.+2.j -1.+2.j]

Array2...
   [1.+2.j 2.+2.j]

Array1 datatype...
complex128

Array2 datatype...
complex128

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(2,)

Shape of Array2...
(2,)

Result...
   [[ 1. +0.j 1. +2.j -3. +4.j -11. -2.j -2. +2.j -6. -2.j -2.-14.j 26.-18.j 0. -8.j 16. -8.j 32.+24.j                -16.+88.j]
   [ 1. +0.j 2. +2.j 0. +8.j -16.+16.j -1. +2.j -6. +2.j -16. -8.j -16.-48.j -3. -4.j 2.-14.j 32.-24.j                112.+16.j]]

  1. Pythonで点座標のfloat配列を使用してチェビシェフ多項式の疑似ファンデルモンド行列を生成します

    チェビシェフ多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthechebyshev.chebvander()を使用します。このメソッドは、度度とサンプルポイント(x、y)の疑似ファンデルモンド行列を返します。パラメータx、yは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg]の形式の最大度のリストです。 ステップ まず、必要なライブラリをインポートします- import n

  2. Pythonで点の複素配列を使用してチェビシェフ多項式のファンデルモンド行列を生成します

    チェビシェフ多項式のファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するチェビシェフ多項式の次数です。dtypeは変換されたxと同じになります。 パラメータaは点の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1-D配列に変換されます。パラメータdegは、結果の行列の次数です。 ス