Python
 Computer >> コンピューター >  >> プログラミング >> Python

Pythonでルジャンドル多項式とx、y複素数の点の配列の疑似ファンデルモンド行列を生成します


ルジャンドル多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthelegendre.legvander2d()メソッドを使用します。このメソッドは、疑似ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するルジャンドル多項式の次数です。 dtypeは、変換されたxと同じになります。

パラメータx、yは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1次元配列に変換されます。パラメーターdegは、[x_deg、y_deg]の形式の最大度のリストです。

>

ステップ

まず、必要なライブラリをインポートします-

import numpy as np
from numpy.polynomial import legendre as L

numpy.array()メソッドを使用して、すべて同じ形状の点座標の配列を作成します-

x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])

配列を表示する-

print("Array1...\n",x)
print("\nArray2...\n",y)

データ型を表示する-

print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

両方のアレイの寸法を確認してください-

print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

両方のアレイの形状を確認してください-

print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

ルジャンドル多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthelegendre.legvander2d()メソッドを使用します-

x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))

import numpy as np
from numpy.polynomial import legendre as L

# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([-2.+2.j, -1.+2.j])
y = np.array([1.+2.j, 2.+2.j])

# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)

# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

# To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy

x_deg, y_deg = 2, 3
print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))

出力

Array1...
   [-2.+2.j -1.+2.j]

Array2...
   [1.+2.j 2.+2.j]

Array1 datatype...
complex128

Array2 datatype...
complex128

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(2,)

Shape of Array2...
(2,)

Result...
    [[ 1.  +0.j  1. +2.j  -5.   +6.j -29.  -8.j  -2.  +2.j  -6.   -2.j
      -2. -22.j 74. -42.j -0.5 -12.j  23.5 -13.j 74.5 +57.j -81.5 +352.j]
    [ 1.  +0.j   2.   +2.j  -0.5 +12.j -43. +37.j  -1. +2.j  -6.  +2.j
    -23.5 -13.j -31. -123.j -5.  -6.j   2.  -22.j 74.5 -57.j 437. +73.j]]

  1. Pythonでチェビシェフ多項式と点のx、y、z浮動配列の疑似ファンデルモンド行列を生成します

    チェビシェフ多項式とx、y、zサンプルポイントの疑似ファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、度度とサンプルポイント(x、y、z)の疑似ファンデルモンド行列を返します。 パラメータx、y、zは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg、z_deg]の形式の最大度のリストです。 ステップ まず、必要な

  2. Pythonでエルミート多項式とx、y、z複素数の点の配列の疑似ファンデルモンド行列を生成します

    エルミート多項式とx、y、zサンプルポイントの疑似ファンデルモンド行列を生成するには、Python Numpyでhermite.hermvander3d()を使用します。このメソッドは、疑似ファンデルモンド行列を返します。パラメータx、y、zは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複雑であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg、z_deg]の形式の最大度のリストです。 ステップ まず、必要なライブラリをインポートします- numpy a