Pythonで点座標のfloat配列を使用してチェビシェフ多項式の疑似ファンデルモンド行列を生成します
チェビシェフ多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthechebyshev.chebvander()を使用します。このメソッドは、度度とサンプルポイント(x、y)の疑似ファンデルモンド行列を返します。パラメータx、yは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg]の形式の最大度のリストです。
ステップ
まず、必要なライブラリをインポートします-
import numpy as np from numpy.polynomial import chebyshev as C
numpy.array()メソッドを使用して、すべて同じ形状の点座標の配列を作成します-
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
配列を表示する-
print("Array1...\n",x) print("\nArray2...\n",y)
データ型を表示する-
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
両方のアレイの寸法を確認してください-
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
両方のアレイの形状を確認してください-
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
チェビシェフ多項式の疑似ファンデルモンド行列を生成するには、Pythonでthechebyshev.chebvander()を使用します-
x_deg, y_deg = 2, 3 print("\nResult...\n",C.chebvander2d(x,y, [x_deg, y_deg]))
例
import numpy as np from numpy.polynomial import chebyshev as C # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Chebyshev polynomial, use the chebyshev.chebvander() in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",C.chebvander2d(x,y, [x_deg, y_deg]))
出力
Array1... [0.1 1.4] Array2... [1.7 2.8] Array1 datatype... float64 Array2 datatype... float64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1.0000000e+00 1.7000000e+00 4.7800000e+00 1.4552000e+01 1.0000000e-01 1.7000000e-01 4.7800000e-01 1.4552000e+00 -9.8000000e-01 -1.6660000e+00 -4.6844000e+00 -1.4260960e+01] [ 1.0000000e+00 2.8000000e+00 1.4680000e+01 7.9408000e+01 1.4000000e+00 3.9200000e+00 2.0552000e+01 1.1117120e+02 2.9200000e+00 8.1760000e+00 4.2865600e+01 2.3187136e+02]]
-
Pythonで点の複素配列を使用してチェビシェフ多項式のファンデルモンド行列を生成します
チェビシェフ多項式のファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するチェビシェフ多項式の次数です。dtypeは変換されたxと同じになります。 パラメータaは点の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1-D配列に変換されます。パラメータdegは、結果の行列の次数です。 ス
-
Pythonで点のfloat配列を使用してチェビシェフ多項式のファンデルモンド行列を生成します
チェビシェフ多項式のファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するチェビシェフ多項式の次数です。dtypeは変換されたxと同じになります。 パラメータaは点の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1-D配列に変換されます。パラメータdegは、結果の行列の次数です。 ス