SeaBornでバイオリン図を作成する– Python Pandas
Seabornのバイオリン図は、箱ひげ図とカーネル密度推定の組み合わせを描くために使用されます。これにはseaborn.violinplot()が使用されます。
以下がCSVファイル形式のデータセットであるとしましょう-Cricketers.csv
まず、必要な3つのライブラリをインポートします-
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
CSVファイルからPandasDataFrameにデータをロードする-
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv")
カラム重量(kgs)を使用したバイオリン図のプロット-
sb.violinplot(dataFrame['Weight'])
例
例を見てみましょう-
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame: dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv") # plotting violin plot with Weight (kgs) sb.violinplot(dataFrame['Weight']) # set label plt.xlabel("Weight (kgs)") # display plt.show()を使用してバイオリン図をプロットする
出力
これにより、次の出力が生成されます-
-
PythonPandas-Seabornを使用して箱ひげ図の上に観測の群れを描画します
SeabornのSwarmPlotは、重複しないポイントを持つカテゴリ散布図を描画するために使用されます。これにはseaborn.swarmplot()が使用されます。 seaborn.boxplot()を使用して、箱ひげ図の上に観測値の群れを描画します。 以下がCSVファイルの形式のデータセットであるとしましょう-Cricketers2.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import numpy as np import matplotlib.pyplot as plt CSVファイルか
-
Python Pandas-Seabornで明示的な順序を渡すことにより、バイオリン図を描画し、順序を制御します
Seabornのバイオリン図は、箱ひげ図とカーネル密度推定の組み合わせを描くために使用されます。これにはseaborn.violinplot()が使用されます。 順序を使用して明示的な順序を設定します violinplot()のパラメータ。 以下がCSVファイル形式のデータセットであるとしましょう-Cricketers.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as plt CSVファイルからPandasDataFrameにデータをロードする- d