PythonPandas-Seabornを使用して箱ひげ図の上に観測の群れを描画します
SeabornのSwarmPlotは、重複しないポイントを持つカテゴリ散布図を描画するために使用されます。これにはseaborn.swarmplot()が使用されます。 seaborn.boxplot()を使用して、箱ひげ図の上に観測値の群れを描画します。
以下がCSVファイルの形式のデータセットであるとしましょう-Cricketers2.csv
まず、必要なライブラリをインポートします-
import seaborn as sb import pandas as pd import numpy as np import matplotlib.pyplot as plt
CSVファイルからPandasDataFrameにデータをロードする-
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv")
箱ひげ図の上に観測の群れを描く-
sb.boxplot(x = "Matches", y = "Role", data= dataFrame, whis=np.inf) sb.swarmplot(x = "Matches", y = "Role", data= dataFrame, color=".3")
例
以下はコードです
import seaborn as sb import pandas as pd import numpy as np import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv") sb.set_theme(style="whitegrid") # draw swarms of observations on top of a box plot sb.boxplot(x = "Matches", y = "Role", data= dataFrame, whis=np.inf) sb.swarmplot(x = "Matches", y = "Role", data= dataFrame, color=".3") # display plt.show()
出力
これにより、次の出力が生成されます
-
Python Pandas-バイオリン図を描き、Seabornで四分位数を水平線として設定します
Seabornのバイオリン図は、箱ひげ図とカーネル密度推定の組み合わせを描くために使用されます。 seaborn.violinplot()が使用されます。 内側を使用して四分位数を水平線として設定します 値が四分位のパラメータ 。 以下がCSVファイルの形式のデータセットであるとしましょう-Cricketers.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as plt CSVファイルからPandasDataFrameにデータをロードする- dataF
-
Python Pandas-Seabornを使用して、群れを2つのカテゴリ変数でグループ化します
SeabornのSwarmPlotは、重複しないポイントを持つカテゴリ散布図を描画するために使用されます。これにはseaborn.swarmplot()が使用されます。群れを2つのカテゴリ変数でグループ化するには、x、y、または色相を使用してswarmplot()でそれらの変数を設定します。 パラメータ。 次がCSVファイル形式のデータセットであるとしましょう:Cricketers2.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as plt CSV