Python Pandas-水平方向のバイオリンをプロットし、Seabornでの観測で明示的な順序を並べ替えます
Seabornのバイオリン図は、箱ひげ図とカーネル密度推定の組み合わせを描くために使用されます。これにはseaborn.violinplot()が使用されます。 注文 秩序パラメーターを使用し、内部を使用して観測値を設定します パラメータ。
以下がCSVファイル形式のデータセットであるとしましょう-Cricketers.csv
まず、必要なライブラリをインポートします-
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
CSVファイルからPandasDataFrameにデータをロードする-
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv")
Role列とAge列を使用して水平バイオリン図をプロットします。秩序パラメーターで秩序化し、内部パラメーターを使用して観測値を設定します-
sb.violinplot(x = 'Age', y = "Role", order=["Batsman", "Bowler"], data = dataFrame, inner="stick")
例
以下はコードです-
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame: dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv") # plotting violin plot with Role and Age # order with order parameter and set observations using inner parameter sb.violinplot(x = 'Age', y = "Role", order=["Batsman", "Bowler"],data = dataFrame, inner="stick") # display plt.show()
出力
これにより、次の出力が生成されます-
-
Python Pandas-Seabornで明示的な順序を渡すことにより、群れのプロットを描画し、群れの順序を制御します
SeabornのSwarmPlotは、重複しないポイントを持つカテゴリ散布図を描画するために使用されます。 seaborn.swarmplot() これに使用されます。明示的な順序、つまり順序を使用した特定の列に基づく順序を渡すことにより、群れの順序を制御します パラメータ- 以下がCSVファイルの形式のデータセットであるとしましょう-Cricketers2.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as plt CSVファイルからPandasD
-
Python Pandas-Seabornで明示的な順序を渡すことにより、バイオリン図を描画し、順序を制御します
Seabornのバイオリン図は、箱ひげ図とカーネル密度推定の組み合わせを描くために使用されます。これにはseaborn.violinplot()が使用されます。 順序を使用して明示的な順序を設定します violinplot()のパラメータ。 以下がCSVファイル形式のデータセットであるとしましょう-Cricketers.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as plt CSVファイルからPandasDataFrameにデータをロードする- d