Python
 Computer >> コンピューター >  >> プログラミング >> Python

PythonでHermite_eシリーズを区別する


Hermite_eシリーズを区別するには、Pythonでhermite.hermeder()メソッドを使用します。最初のパラメーターcは、エルミート級数係数の配列です。 cが多次元の場合、異なる軸は異なる変数に対応し、各軸の次数は対応するインデックスで指定されます。

2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数が取得されるAxisです。 (デフォルト:0)。

ステップ

まず、必要なライブラリをインポートします-

import numpy as np
from numpy.polynomial import hermite_e as H

係数の配列を作成する-

c = np.array([1,2,3,4])

配列を表示する-

print("Our Array...\n",c)

寸法を確認してください-

print("\nDimensions of our Array...\n",c.ndim)

データ型を取得-

print("\nDatatype of our Array object...\n",c.dtype)

形をとる-

print("\nShape of our Array object...\n",c.shape)

Hermite_eシリーズを区別するには、Pythonでhermite.hermeder()メソッドを使用します-

print("\nResult...\n",H.hermeder(c))

import numpy as np
from numpy.polynomial import hermite_e as H

# Create an array of coefficients
c = np.array([1,2,3,4])

# Display the array
print("Our Array...\n",c)

# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)

# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)

# Get the Shape
print("\nShape of our Array object...\n",c.shape)

# To differentiate a Hermite_e series, use the hermite.hermeder() method in Python
print("\nResult...\n",H.hermeder(c))

出力

Our Array...
[1 2 3 4]

Dimensions of our Array...
1

Datatype of our Array object...
int64

Shape of our Array object...
(4,)

Result...
[ 2. 6. 12.]

  1. Hermite_eシリーズを区別し、Pythonで導関数を設定します

    Hermite_eシリーズを区別するには、Pythonでhermite_e.hermeder()メソッドを使用します。最初のパラメーターcは、Hermite_e級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであ

  2. Pythonで多次元係数を使用してHermite_eシリーズを区別する

    Hermite_eシリーズを区別するには、Pythonでhermite_e.hermeder()メソッドを使用します。最初のパラメーターcは、Hermite_e級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであ