Python
 Computer >> コンピューター >  >> プログラミング >> Python

Python-Pandas DataFrameを年ごとにグループ化する方法は?


groupby()を使用してPandasDataFrameをグループ化します。グルーパー機能を使用して、使用する列を選択します。以下に示す自動車販売記録の例では、年ごとにグループ化し、登録価格と年間隔の合計を計算します。

最初に、次が3つの列を持つPandasDataFrameであるとしましょう-

# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [pd.Timestamp("2021-06-10"),
         pd.Timestamp("2019-07-11"),
         pd.Timestamp("2016-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2020-03-20"),
         pd.Timestamp("2019-01-22"),
         pd.Timestamp("2011-01-06"),
         pd.Timestamp("2013-01-04"),
         pd.Timestamp("2014-05-09")
      ],
      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

次に、Grouperを使用して、groupby関数内のDate_of_Purchase列を選択します。頻度は3Y、つまり3年の間隔をグループ化して設定されます。

以下はコードです-

import pandas as pd

# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [pd.Timestamp("2021-06-10"),
         pd.Timestamp("2019-07-11"),
         pd.Timestamp("2016-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2020-03-20"),
         pd.Timestamp("2019-01-22"),
         pd.Timestamp("2011-01-06"),
         pd.Timestamp("2013-01-04"),
         pd.Timestamp("2014-05-09")
      ],

      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

print("DataFrame...\n",dataFrame)

# Grouper to select Date_of_Purchase column within groupby function
print("\nGroup Dataframe by 3 years...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='3Y')).sum())

出力

これにより、次の出力が生成されます-

DataFrame...
        Car   Date_of_Purchase Reg_Price
0      Audi         2021-06-10 1000
1     Lexus         2019-07-11 1400
2     Tesla         2016-06-25 1100
3  Mercedes         2021-06-29 900
4       BMW         2020-03-20 1700
5    Toyota         2019-01-22 1800
6    Nissan         2011-01-06 1300
7   Bentley         2013-01-04 1150
8   Mustang         2014-05-09 1350

Group Dataframe by 3 years...
Reg_Price
Date_of_Purchase
2011-12-31 1300
2014-12-31 2500
2017-12-31 1100
2020-12-31 4900
2023-12-31 1900

  1. Python-PandasDataFrameのサブセットを選択する方法

    以下は、MicrosoftExcelで開いたCSVファイルの内容であるとしましょう- 最初に、CSVファイルからPandasDataFrameにデータをロードします- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\SalesData.csv") サブセットを選択するには、角かっこを使用します。括弧内の列に言及し、データセット全体から単一の列をフェッチします- dataFrame['Car'] 例 以下はコードです- import pandas as pd # Load data fr

  2. Python-棒グラフでPandasDataFrameをプロットする方法

    CSVファイルの内容は次のとおりです-        Car Reg_Price 0      BMW 2000 1    Lexus 1500 2     Audi 1500 3   Jaguar 2000 4  Mustang 1500 必要なライブラリをインポートします- import pandas as pd import matplotlib.pyplot as mp CSVファ