Python-Pandas DataFrameを年ごとにグループ化する方法は?
groupby()を使用してPandasDataFrameをグループ化します。グルーパー機能を使用して、使用する列を選択します。以下に示す自動車販売記録の例では、年ごとにグループ化し、登録価格と年間隔の合計を計算します。
最初に、次が3つの列を持つPandasDataFrameであるとしましょう-
# dataframe with one of the columns as Date_of_Purchase dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [pd.Timestamp("2021-06-10"), pd.Timestamp("2019-07-11"), pd.Timestamp("2016-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2020-03-20"), pd.Timestamp("2019-01-22"), pd.Timestamp("2011-01-06"), pd.Timestamp("2013-01-04"), pd.Timestamp("2014-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } )
次に、Grouperを使用して、groupby関数内のDate_of_Purchase列を選択します。頻度は3Y、つまり3年の間隔をグループ化して設定されます。
例
以下はコードです-
import pandas as pd # dataframe with one of the columns as Date_of_Purchase dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [pd.Timestamp("2021-06-10"), pd.Timestamp("2019-07-11"), pd.Timestamp("2016-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2020-03-20"), pd.Timestamp("2019-01-22"), pd.Timestamp("2011-01-06"), pd.Timestamp("2013-01-04"), pd.Timestamp("2014-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } ) print("DataFrame...\n",dataFrame) # Grouper to select Date_of_Purchase column within groupby function print("\nGroup Dataframe by 3 years...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='3Y')).sum())
出力
これにより、次の出力が生成されます-
DataFrame... Car Date_of_Purchase Reg_Price 0 Audi 2021-06-10 1000 1 Lexus 2019-07-11 1400 2 Tesla 2016-06-25 1100 3 Mercedes 2021-06-29 900 4 BMW 2020-03-20 1700 5 Toyota 2019-01-22 1800 6 Nissan 2011-01-06 1300 7 Bentley 2013-01-04 1150 8 Mustang 2014-05-09 1350 Group Dataframe by 3 years... Reg_Price Date_of_Purchase 2011-12-31 1300 2014-12-31 2500 2017-12-31 1100 2020-12-31 4900 2023-12-31 1900
-
Python-PandasDataFrameのサブセットを選択する方法
以下は、MicrosoftExcelで開いたCSVファイルの内容であるとしましょう- 最初に、CSVファイルからPandasDataFrameにデータをロードします- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\SalesData.csv") サブセットを選択するには、角かっこを使用します。括弧内の列に言及し、データセット全体から単一の列をフェッチします- dataFrame['Car'] 例 以下はコードです- import pandas as pd # Load data fr
-
Python-棒グラフでPandasDataFrameをプロットする方法
CSVファイルの内容は次のとおりです- Car Reg_Price 0 BMW 2000 1 Lexus 1500 2 Audi 1500 3 Jaguar 2000 4 Mustang 1500 必要なライブラリをインポートします- import pandas as pd import matplotlib.pyplot as mp CSVファ