Python
 Computer >> コンピューター >  >> プログラミング >> Python

Python –PandasDataFrameの列値の合計をグループ化して計算します


車の販売記録の例を検討し、月ごとにグループ化して、月ごとの車の登録価格の合計を計算します。合計するには、sum()メソッドを使用します。

最初に、次が3つの列を持つPandasDataFrameであるとしましょう-

dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [
         pd.Timestamp("2021-06-10"),
         pd.Timestamp("2021-07-11"),
         pd.Timestamp("2021-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2021-03-20"),
         pd.Timestamp("2021-01-22"),
         pd.Timestamp("2021-01-06"),
         pd.Timestamp("2021-01-04"),
         pd.Timestamp("2021-05-09")
      ],

      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

Grouperを使用して、groupby()関数内のDate_of_Purchase列を選択します。頻度頻度 は月ごとにグループ化するように「M」に設定され、sumはsum()関数を使用して計算されます-

print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()

以下はコードです-

import pandas as pd

# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
   {
      "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],

      "Date_of_Purchase": [
         pd.Timestamp("2021-06-10"),
         pd.Timestamp("2021-07-11"),
         pd.Timestamp("2021-06-25"),
         pd.Timestamp("2021-06-29"),
         pd.Timestamp("2021-03-20"),
         pd.Timestamp("2021-01-22"),
         pd.Timestamp("2021-01-06"),
         pd.Timestamp("2021-01-04"),
         pd.Timestamp("2021-05-09")
      ],

      "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
   }
)

print"DataFrame...\n",dataFrame

# Grouper to select Date_of_Purchase column within groupby function
# calculation the sum month-wise
print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()

出力

これにより、次の出力が生成されます-

DataFrame...
        Car   Date_of_Purchase   Reg_Price
0      Audi        2021-06-10        1000
1     Lexus        2021-07-11        1400
2     Tesla        2021-06-25        1100
3  Mercedes        2021-06-29         900
4       BMW        2021-03-20        1700
5    Toyota        2021-01-22        1800
6    Nissan        2021-01-06        1300
7   Bentley        2021-01-04        1150
8   Mustang        2021-05-09        1350

Group Dataframe by month...
                   Reg_Price
Date_of_Purchase
2021-01-31           4250.0
2021-02-28              NaN
2021-03-31           1700.0
2021-04-30              NaN
2021-05-31           1350.0
2021-06-30           3000.0
2021-07-31           1400.0

  1. Python-Pandas DataFrameを月ごとにグループ化する方法は?

    groupbyを使用してPandasDataFrameをグループ化します 。グルーパー機能を使用して、使用する列を選択します。以下に示す自動車販売記録の例では、月ごとにグループ化し、登録価格の合計を毎月計算します。 最初に、次が3つの列を持つPandasDataFrameであるとしましょう- dataFrame = pd.DataFrame(    {       "Car": ["Audi", "Lexus", "Tesla", "Mercedes&q

  2. Pandas Pythonでデータフレームの特定の列の合計を取得するにはどうすればよいですか?

    特定の列の合計を取得する必要がある場合があります。ここで「合計」関数を使用できます。 合計を計算する必要がある列は、値として合計関数に渡すことができます。列のインデックスを渡して合計を求めることもできます。 同じのデモンストレーションを見てみましょう- 例 import pandas as pd my_data = {'Name':pd.Series(['Tom','Jane','Vin','Eve','Will']),'Age':pd.Series([45, 67, 89, 1