Python –PandasDataFrameの列値の合計をグループ化して計算します
車の販売記録の例を検討し、月ごとにグループ化して、月ごとの車の登録価格の合計を計算します。合計するには、sum()メソッドを使用します。
最初に、次が3つの列を持つPandasDataFrameであるとしましょう-
dataFrame = pd.DataFrame(
{
"Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],
"Date_of_Purchase": [
pd.Timestamp("2021-06-10"),
pd.Timestamp("2021-07-11"),
pd.Timestamp("2021-06-25"),
pd.Timestamp("2021-06-29"),
pd.Timestamp("2021-03-20"),
pd.Timestamp("2021-01-22"),
pd.Timestamp("2021-01-06"),
pd.Timestamp("2021-01-04"),
pd.Timestamp("2021-05-09")
],
"Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
}
)
Grouperを使用して、groupby()関数内のDate_of_Purchase列を選択します。頻度頻度 は月ごとにグループ化するように「M」に設定され、sumはsum()関数を使用して計算されます-
print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()
例
以下はコードです-
import pandas as pd
# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
{
"Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],
"Date_of_Purchase": [
pd.Timestamp("2021-06-10"),
pd.Timestamp("2021-07-11"),
pd.Timestamp("2021-06-25"),
pd.Timestamp("2021-06-29"),
pd.Timestamp("2021-03-20"),
pd.Timestamp("2021-01-22"),
pd.Timestamp("2021-01-06"),
pd.Timestamp("2021-01-04"),
pd.Timestamp("2021-05-09")
],
"Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
}
)
print"DataFrame...\n",dataFrame
# Grouper to select Date_of_Purchase column within groupby function
# calculation the sum month-wise
print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()
出力
これにより、次の出力が生成されます-
DataFrame...
Car Date_of_Purchase Reg_Price
0 Audi 2021-06-10 1000
1 Lexus 2021-07-11 1400
2 Tesla 2021-06-25 1100
3 Mercedes 2021-06-29 900
4 BMW 2021-03-20 1700
5 Toyota 2021-01-22 1800
6 Nissan 2021-01-06 1300
7 Bentley 2021-01-04 1150
8 Mustang 2021-05-09 1350
Group Dataframe by month...
Reg_Price
Date_of_Purchase
2021-01-31 4250.0
2021-02-28 NaN
2021-03-31 1700.0
2021-04-30 NaN
2021-05-31 1350.0
2021-06-30 3000.0
2021-07-31 1400.0 -
Python-Pandas DataFrameを月ごとにグループ化する方法は?
groupbyを使用してPandasDataFrameをグループ化します 。グルーパー機能を使用して、使用する列を選択します。以下に示す自動車販売記録の例では、月ごとにグループ化し、登録価格の合計を毎月計算します。 最初に、次が3つの列を持つPandasDataFrameであるとしましょう- dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes&q
-
Pandas Pythonでデータフレームの特定の列の合計を取得するにはどうすればよいですか?
特定の列の合計を取得する必要がある場合があります。ここで「合計」関数を使用できます。 合計を計算する必要がある列は、値として合計関数に渡すことができます。列のインデックスを渡して合計を求めることもできます。 同じのデモンストレーションを見てみましょう- 例 import pandas as pd my_data = {'Name':pd.Series(['Tom','Jane','Vin','Eve','Will']),'Age':pd.Series([45, 67, 89, 1