Python
 Computer >> コンピューター >  >> プログラミング >> Python

Pythonでラゲール多項式と点のx、y配列の疑似ファンデルモンド行列を生成します


ラゲール多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthelaguerre.lagvander2d()を使用します。このメソッドは、疑似ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するラゲール多項式の次数です。 dtypeは、変換されたxと同じになります。

パラメータx、yは、点の配列を返します。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1次元配列に変換されます。パラメーターdegは、[x_deg、y_deg]の形式の最大度のリストです。

ステップ

まず、必要なライブラリをインポートします-

import numpy as np
from numpy.polynomial import laguerre as L

numpy.array()メソッドを使用して、すべて同じ形状の点座標の配列を作成します-

x = np.array([1, 2])
y = np.array([3, 4])

配列を表示する-

print("Array1...\n",x)
print("\nArray2...\n",y)

データ型を表示する-

print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

両方のアレイの寸法を確認してください-

print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

両方のアレイの形状を確認してください-

print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

ラゲール多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでlaguerre.lagvander2d()を使用します-

x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))

import numpy as np
from numpy.polynomial import laguerre as L

# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1, 2])
y = np.array([3, 4])

# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)

# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)


# Check the Dimensions of both the array
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

# Check the Shape of both the array
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

# To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander2d() in Python Numpy

x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))

出力

Array1...
   [1 2]

Array2...
   [3 4]

Array1 datatype...
int64

Array2 datatype...
int64

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(2,)

Shape of Array2...
(2,)

Result...
   [[ 1. -2.        -0.5 1.          0.   -0.
     -0. 0.         -0.5 1.          0.25 -0.5 ]
   [ 1. -3.          1.  2.33333333 -1.     3.
    -1. -2.33333333 -1.  3.         -1.    -2.33333333]]

  1. Pythonでチェビシェフ多項式と点のx、y、z浮動配列の疑似ファンデルモンド行列を生成します

    チェビシェフ多項式とx、y、zサンプルポイントの疑似ファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、度度とサンプルポイント(x、y、z)の疑似ファンデルモンド行列を返します。 パラメータx、y、zは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg、z_deg]の形式の最大度のリストです。 ステップ まず、必要な

  2. Pythonでエルミート多項式とx、y、z複素数の点の配列の疑似ファンデルモンド行列を生成します

    エルミート多項式とx、y、zサンプルポイントの疑似ファンデルモンド行列を生成するには、Python Numpyでhermite.hermvander3d()を使用します。このメソッドは、疑似ファンデルモンド行列を返します。パラメータx、y、zは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複雑であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg、z_deg]の形式の最大度のリストです。 ステップ まず、必要なライブラリをインポートします- numpy a