ラゲール多項式の疑似ファンデルモンド行列とPythonでの点のx、y浮動配列を生成します
ラゲール多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthelaguerre.lagvander2d()を使用します。このメソッドは、疑似ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するラゲール多項式の次数です。 dtypeは、変換されたxと同じになります。
パラメータx、yは、点の配列を返します。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1次元配列に変換されます。パラメーターdegは、[x_deg、y_deg]の形式の最大度のリストです。
ステップ
まず、必要なライブラリをインポートします-
import numpy as np from numpy.polynomial import laguerre as L
numpy.array()メソッドを使用して、すべて同じ形状の点座標の配列を作成します-
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
配列を表示する-
print("Array1...\n",x)
print("\nArray2...\n",y) データ型を表示する-
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype) 両方のアレイの寸法を確認してください-
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim) 両方のアレイの形状を確認してください-
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape) ラゲール多項式の疑似ファンデルモンド行列を生成するには、Python Numpyでthelaguerre.lagvander2d()を使用します-
x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg])) 例
import numpy as np
from numpy.polynomial import laguerre as L
# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([0.1, 1.4])
y = np.array([1.7, 2.8])
# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)
# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)
# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)
# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)
# To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander2d() in Python Numpy
x_deg, y_deg = 2, 3
print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg])) 出力
Array1...
[0.1 1.4]
Array2...
[1.7 2.8]
Array1 datatype...
float64
Array2 datatype...
float64
Dimensions of Array1...
1
Dimensions of Array2...
1
Shape of Array1...
(2,)
Shape of Array2...
(2,)
Result...
[[ 1. -0.7 -0.955 -0.58383333 0.9 -0.63
-0.8595 -0.52545 0.805 -0.5635 -0.768775 -0.46998583]
[ 1. -1.8 -0.68 0.70133333 -0.4 0.72
0.272 -0.28053333 -0.82 1.476 0.5576 -0.57509333]] -
Pythonでチェビシェフ多項式と点のx、y、z浮動配列の疑似ファンデルモンド行列を生成します
チェビシェフ多項式とx、y、zサンプルポイントの疑似ファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、度度とサンプルポイント(x、y、z)の疑似ファンデルモンド行列を返します。 パラメータx、y、zは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg、z_deg]の形式の最大度のリストです。 ステップ まず、必要な
-
Pythonでエルミート多項式とx、y、z複素数の点の配列の疑似ファンデルモンド行列を生成します
エルミート多項式とx、y、zサンプルポイントの疑似ファンデルモンド行列を生成するには、Python Numpyでhermite.hermvander3d()を使用します。このメソッドは、疑似ファンデルモンド行列を返します。パラメータx、y、zは、すべて同じ形状の点座標の配列です。 dtypeは、要素のいずれかが複雑であるかどうかに応じて、float64またはcomplex128のいずれかに変換されます。スカラーは1-D配列に変換されます。パラメータdegは、[x_deg、y_deg、z_deg]の形式の最大度のリストです。 ステップ まず、必要なライブラリをインポートします- numpy a