Python-Pandas DataFrameを日数でグループ化する方法は?
groupby()を使用してPandasDataFrameをグループ化します。グルーパー機能を使用して、使用する列を選択します。以下に示す自動車販売記録の例では、日ごとにグループ化し、登録価格と日間隔の合計を計算します。
groupby()grouperメソッドで頻度を日間隔として設定します。つまり、頻度が7Dの場合、日付列に指定された最終日までの毎月7日の間隔でグループ化されたデータを意味します。
最初に、次が3つの列を持つPandasDataFrameであるとしましょう-
import pandas as pd # dataframe with one of the columns as Date_of_Purchase dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2021-03-20"), pd.Timestamp("2021-01-22"), pd.Timestamp("2021-01-06"), pd.Timestamp("2021-01-04"), pd.Timestamp("2021-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } )
次に、Grouperを使用して、groupby関数内のDate_of_Purchase列を選択します。頻度は7Dに設定されます。つまり、列に記載されている最後の日付までグループ化された7日間の間隔-
print"\nGroup Dataframe by 7 days...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7D')).sum()>
例
以下はコードです-
import pandas as pd # dataframe with one of the columns as Date_of_Purchase dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2021-03-20"), pd.Timestamp("2021-01-22"), pd.Timestamp("2021-01-06"), pd.Timestamp("2021-01-04"), pd.Timestamp("2021-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } ) print"DataFrame...\n",dataFrame # Grouper to select Date_of_Purchase column within groupby function print("\nGroup Dataframe by 7 days...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7D')).sum() )
出力
これにより、次の出力が生成されます-
DataFrame... Car Date_of_Purchase Reg_Price 0 Audi 2021-06-10 1000 1 Lexus 2021-07-11 1400 2 Tesla 2021-06-25 1100 3 Mercedes 2021-06-29 900 4 BMW 2021-03-20 1700 5 Toyota 2021-01-22 1800 6 Nissan 2021-01-06 1300 7 Bentley 2021-01-04 1150 8 Mustang 2021-05-09 1350 Group Dataframe by 7 days... Reg_Price Date_of_Purchase 2021-01-04 2450.0 2021-01-11 NaN 2021-01-18 1800.0 2021-01-25 NaN 2021-02-01 NaN 2021-02-08 NaN 2021-02-15 NaN 2021-02-22 NaN 2021-03-01 NaN 2021-03-08 NaN 2021-03-15 1700.0 2021-03-22 NaN 2021-03-29 NaN 2021-04-05 NaN 2021-04-12 NaN 2021-04-19 NaN 2021-04-26 NaN 2021-05-03 1350.0 2021-05-10 NaN 2021-05-17 NaN 2021-05-24 NaN 2021-05-31 NaN 2021-06-07 1000.0 2021-06-14 NaN 2021-06-21 1100.0 2021-06-28 900.0 2021-07-05 1400.0
-
Python-PandasDataFrameのサブセットを選択する方法
以下は、MicrosoftExcelで開いたCSVファイルの内容であるとしましょう- 最初に、CSVファイルからPandasDataFrameにデータをロードします- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\SalesData.csv") サブセットを選択するには、角かっこを使用します。括弧内の列に言及し、データセット全体から単一の列をフェッチします- dataFrame['Car'] 例 以下はコードです- import pandas as pd # Load data fr
-
Python-棒グラフでPandasDataFrameをプロットする方法
CSVファイルの内容は次のとおりです- Car Reg_Price 0 BMW 2000 1 Lexus 1500 2 Audi 1500 3 Jaguar 2000 4 Mustang 1500 必要なライブラリをインポートします- import pandas as pd import matplotlib.pyplot as mp CSVファ