Pythonでポイントのfloat配列を使用して、ルジャンドル多項式のファンデルモンド行列を生成します
ルジャンドル多項式の疑似ファンデルモンド行列を生成するには、Python Numpyのthepolynomial.legvander()メソッドを使用します。このメソッドは、疑似ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するルジャンドル多項式の次数です。 dtypeは、変換されたxと同じになります。
パラメータxは、点の配列を返します。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1次元配列に変換されます。パラメーターdegは、結果の行列の次数です。
ステップ
まず、必要なライブラリをインポートします-
import numpy as np from numpy.polynomial import legendre as L
配列を作成する-
x = np.array([0, 3.5, -1.4, 2.5])
配列を表示する-
print("Our Array...\n",c)
寸法を確認してください-
print("\nDimensions of our Array...\n",c.ndim)
データ型を取得-
print("\nDatatype of our Array object...\n",c.dtype)
形をとる-
print("\nShape of our Array object...\n",c.shape)
ルジャンドル多項式の疑似ファンデルモンド行列を生成するには、thepolynomial.legvander()メソッド-
を使用します。print("\nResult...\n",L.legvander(x, 2))
例
import numpy as np from numpy.polynomial import legendre as L # Create an array x = np.array([0, 3.5, -1.4, 2.5]) # Display the array print("Our Array...\n",x) # Check the Dimensions print("\nDimensions of our Array...\n",x.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",x.dtype) # Get the Shape print("\nShape of our Array object...\n",x.shape) # To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the polynomial.legvander() method in Python Numpy print("\nResult...\n",L.legvander(x, 2))
出力
Our Array... [ 0. 3.5 -1.4 2.5] Dimensions of our Array... 1 Datatype of our Array object... float64 Shape of our Array object... (4,) Result... [[ 1. 0. -0.5 ] [ 1. 3.5 17.875] [ 1. -1.4 2.44 ] [ 1. 2.5 8.875]]
-
Pythonで点の複素配列を使用してチェビシェフ多項式のファンデルモンド行列を生成します
チェビシェフ多項式のファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するチェビシェフ多項式の次数です。dtypeは変換されたxと同じになります。 パラメータaは点の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1-D配列に変換されます。パラメータdegは、結果の行列の次数です。 ス
-
Pythonで点のfloat配列を使用してチェビシェフ多項式のファンデルモンド行列を生成します
チェビシェフ多項式のファンデルモンド行列を生成するには、Python Numpyでchebyshev.chebvander()を使用します。このメソッドは、ファンデルモンド行列を返します。返される行列の形状はx.shape+(deg + 1、)です。ここで、最後のインデックスは対応するチェビシェフ多項式の次数です。dtypeは変換されたxと同じになります。 パラメータaは点の配列です。 dtypeは、要素のいずれかが複合であるかどうかに応じて、float64またはcomplex128に変換されます。 xがスカラーの場合、1-D配列に変換されます。パラメータdegは、結果の行列の次数です。 ス