Pythonの係数の4d配列を使用して、x、y、zのデカルト積で3Dルジャンドル系列を評価します
x、y、zのデカルト積で3Dルジャンドル系列を評価するには、Python Numpyのthepolynomial.legendre.leggrid3d()メソッドを使用します。このメソッドは、xとzのデカルト積の点での3次元チェビシェフ系列の値を返します。 cの次元が3次元未満の場合、3次元にするために、cの次元が暗黙的にその形状に追加されます。結果の形状は、c.shape [3:] + x.shape + y.shape+z.shapeになります。
最初のパラメーターはx、y、zです。 3次元系列は、x、y、およびzの直積の点で評価されます。 xまたはyがリストまたはタプルの場合、最初にndarrayに変換されます。それ以外の場合は変更されず、ndarrayでない場合は、スカラーとして扱われます。
2番目のパラメーターはcです。 multidegreei、jの項の係数がc [i、j]に含まれるように順序付けられた係数の配列。 cの次元が2より大きい場合、残りのインデックスは複数の係数セットを列挙します。
ステップ
まず、必要なライブラリをインポートします-
import numpy as np from numpy.polynomial import legendre as L
係数の4次元配列を作成します-
c = np.arange(48).reshape(2,2,6,2)
配列を表示する-
print("Our Array...\n",c)
寸法を確認してください-
print("\nDimensions of our Array...\n",c.ndim)
データ型を取得-
print("\nDatatype of our Array object...\n",c.dtype)
形をとる-
print("\nShape of our Array object...\n",c.shape)
x、y、zのデカルト積で3Dルジャンドル系列を評価するには、Pythonでthepolynomial.legendre.leggrid3d()メソッドを使用します-
print("\nResult...\n",L.leggrid3d([1,2],[1,2],[1,2],c))
例
import numpy as np from numpy.polynomial import legendre as L # Create a 4d array of coefficients c = np.arange(48).reshape(2,2,6,2) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To evaluate a 3D Legendre series on the Cartesian product of x, y and z use the polynomial.legendre.leggrid3d() method in Python Numpy print("\nResult...\n",L.leggrid3d([1,2],[1,2],[1,2],c))
出力
Our Array... [[[[ 0 1] [ 2 3] [ 4 5] [ 6 7] [ 8 9] [10 11]] [[12 13] [14 15] [16 17] [18 19] [20 21] [22 23]]] [[[24 25] [26 27] [28 29] [30 31] [32 33] [34 35]] [[36 37] [38 39] [40 41] [42 43] [44 45] [46 47]]]] Dimensions of our Array... 4 Datatype of our Array object... int64 Shape of our Array object... (2, 2, 6, 2) Result... [[[[ 552. 28911. ] [ 900. 46566. ]] [[ 972. 49765.5 ] [ 1566. 79447.5 ]]] [[[ 576. 29977.5 ] [ 936. 48165.75 ]] [[ 1008. 51365.25 ] [ 1620. 81847.125]]]]
-
Pythonの係数の1d配列を使用して、xとyのデカルト積で2次元エルミート_e系列を評価します
xとyのデカルト積で2次元Hermite_eシリーズを評価するには、Pythonでhermite_e.hermegrid2d(x、y、c)メソッドを使用します。このメソッドは、xとyのデカルト積の点での2次元多項式の値を返します。 パラメータはx、yです。 2次元系列は、xとyのデカルト積の点で評価されます。 xまたはyがリストまたはタプルの場合、最初にndarrayに変換されます。それ以外の場合は変更されず、ndarrayでない場合は、スカラーとして扱われます。 パラメータcは、次数i、jの項の係数がc [i、j]に含まれるように順序付けられた係数の配列です。 cの次元が2より大きい場合
-
Pythonの係数の1d配列を使用して、xとyのデカルト積の2次元多項式を評価します。
xとyのデカルト積で2次元多項式を評価するには、Pythonでpolynomial.polygrid2d(x、y、c)メソッドを使用します。このメソッドは、xとyのデカルト積の点での2次元多項式の値を返します。 1番目のパラメーターxとyは、xとyのデカルト積の点で評価される2次元系列です。 xまたはyがリストまたはタプルの場合、最初にndarrayに変換されます。それ以外の場合は変更されず、ndarrayでない場合は、スカラーとして扱われます。 2番目のパラメーターcは、次数i、jの項の係数がc [i、j]に含まれるように順序付けられた係数の配列です。 cの次元が2より大きい場合、残りのイ