PythonでLegendreシリーズを差別化する
Legendreシリーズを区別するには、Pythonでpolynomial.laguerre.legder()メソッドを使用します。軸に沿ってm回微分されたルジャンドル級数係数cを返します。各反復で、結果にsclが乗算されます。最初のパラメーターcは、ルジャンドル級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。
2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数が取得されるanAxisです。 (デフォルト:0)。
ステップ
まず、必要なライブラリをインポートします-
import numpy as np from numpy.polynomial import legendre as L
係数の配列を作成する-
c = np.array([1,2,3,4])
配列を表示する-
print("Our Array...\n",c)
寸法を確認してください-
print("\nDimensions of our Array...\n",c.ndim)
データ型を取得-
print("\nDatatype of our Array object...\n",c.dtype)
形をとる-
print("\nShape of our Array object...\n",c.shape)
Legendreシリーズを区別するには、Pythonでpolynomial.laguerre.legder()メソッドを使用します。軸に沿ってm回微分されたルジャンドル級数係数cを返します。各反復で、結果はscl-
で乗算されます。print("\nResult...\n",L.legder(c))
例
import numpy as np from numpy.polynomial import legendre as L # Create an array of coefficients c = np.array([1,2,3,4]) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To differentiate a Legendre series, use the polynomial.laguerre.legder() method in Python print("\nResult...\n",L.legder(c))
出力
Our Array... [1 2 3 4] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (4,) Result... [ 6. 9. 20.]
-
Pythonでエルミートシリーズを区別する
Hermiteシリーズを区別するには、Pythonでhermite.hermder()メソッドを使用します。最初のパラメーターは、エルミート級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果は、scl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数が取
-
PythonでHermite_eシリーズを区別する
Hermite_eシリーズを区別するには、Pythonでhermite.hermeder()メソッドを使用します。最初のパラメーターcは、エルミート級数係数の配列です。 cが多次元の場合、異なる軸は異なる変数に対応し、各軸の次数は対応するインデックスで指定されます。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数が取