PythonでMatplotlibとPandasを使用してCSVデータをプロットする方法は?
PythonでMatplotlibとPandasを使用してCSVデータをプロットするには、次の手順を実行できます-
- 図のサイズを設定し、サブプロット間およびサブプロットの周囲のパディングを調整します。
- .CSVファイルのヘッダーのリストを作成します。
- ヘッダー付きのCSVファイルを読み取ります。
- インデックスを設定し、データフレームをプロットします。
- 図を表示するには、 show()を使用します メソッド。
例
import pandas as pd import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True headers = ['Name', 'Age', 'Marks'] df = pd.read_csv('student.csv', names=headers) df.set_index('Name').plot() plt.show()
出力
-
Matplotlibを使用して、Pythonを使用して3次元散布図を作成するにはどうすればよいですか?
Matplotlibは、データの視覚化に使用される人気のあるPythonパッケージです。データの視覚化は、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているのかを理解するのに役立つため、重要なステップです。定量的な洞察を聴衆に効果的に伝えるのに役立ちます。 Matplotlibは、データを使用して2次元プロットを作成するために使用されます。 Pythonアプリケーションにプロットを埋め込むのに役立つオブジェクト指向APIが付属しています。 Matplotlibは、IPythonシェル、Jupyterノートブック、SpyderIDEなどで使用できます。 Pyth
-
matplotlibとPythonを使用して、複数のプロットを同じ図にプロットするにはどうすればよいですか?
Matplotlibは、データの視覚化に使用される人気のあるPythonパッケージです。 データを視覚化することは、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているのかを理解するのに役立つため、重要なステップです。 定量的な洞察を聴衆に効果的に伝えるのに役立ちます。 Matplotlibは、データを使用して2次元プロットを作成するために使用されます。 Pythonアプリケーションにプロットを埋め込むのに役立つオブジェクト指向APIが付属しています。 Matplotlibは、IPythonシェル、Jupyterノートブック、SpyderIDEなどで使用できま