PythonPandas-Seabornを使用してカテゴリ変数でグループ化された一連の垂直バープロットを描画します
Seabornの棒グラフは、点推定と信頼区間を長方形の棒として表示するために使用されます。これには、seaborn.barplot()が使用されます。 barplot()メソッドで変数をx座標またはy座標として渡すことにより、カテゴリ変数によってグループ化された垂直棒グラフをプロットします。
以下がCSVファイル形式のデータセットであるとしましょう-Cricketers2.csv
まず、必要なライブラリをインポートします-
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
CSVファイルからPandasDataFrameにデータをロードする-
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv")
カテゴリ変数でグループ化された垂直バープロットのプロット-
sb.barplot(x = dataFrame["Role"], y = dataFrame["Matches"])
例
以下はコードです-
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv") # plotting vertical bar plots grouped by a categorical variable sb.barplot(x = dataFrame["Role"], y = dataFrame["Matches"]) # display plt.show()
出力
これにより、次の出力が生成されます-
-
Seaborn –PythonPandasを使用してデータセット全体を渡すラインプロットを描画します
SeabornのLineplotは、いくつかのセマンティックグループ化の可能性がある折れ線グラフを描画するために使用されます。これにはseaborn.lineplot()が使用されます。データセット全体でラインプロットをプロットするには、lineplot()を使用して、x値とy値を指定せずに完全なデータセットを設定します。 以下がCSVファイル形式のデータセットであるとしましょう-Cricketers2.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as
-
Python Pandas-バイオリン図を描き、Seabornで四分位数を水平線として設定します
Seabornのバイオリン図は、箱ひげ図とカーネル密度推定の組み合わせを描くために使用されます。 seaborn.violinplot()が使用されます。 内側を使用して四分位数を水平線として設定します 値が四分位のパラメータ 。 以下がCSVファイルの形式のデータセットであるとしましょう-Cricketers.csv まず、必要なライブラリをインポートします- import seaborn as sb import pandas as pd import matplotlib.pyplot as plt CSVファイルからPandasDataFrameにデータをロードする- dataF