Python
 Computer >> コンピューター >  >> プログラミング >> Python

2つの1次元シーケンスの離散線形畳み込みを返し、Pythonでそれらが重複する場所を取得します


2つの1次元シーケンスの離散線形畳み込みを返すには、Python Numpyのthenumpy.convolve()メソッドを使用します。畳み込み演算子は、信号処理でよく見られます。信号処理では、線形時不変システムが信号に与える影響をモデル化します。確率論では、2つの独立確率変数の合計は、それらの個々の分布の畳み込みに従って分布されます。

vがaより長い場合、配列は計算前に交換されます。このメソッドは、aとvの離散線形畳み込みを返します。最初のパラメーターaは、最初の1次元入力配列です。 2番目のパラメーターvは、2番目の1次元入力配列です。 3番目のパラメータであるmodeはオプションで、値はfull」、「valid」、「same」です。

モード「有効」は、長さmax(M、N)-min(M、N)+ 1の出力を返します。畳み込み積は、信号が完全にオーバーラップするポイントに対してのみ与えられます。信号境界外の値は効果がありません。

ステップ

まず、必要なライブラリをインポートします-

import numpy as np

array()メソッドを使用して2つのnumpy1次元配列を作成する-

arr1 = np.array([1, 2, 3])
arr2 = np.array([0, 1, 0.5])

配列を表示する-

print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

両方のアレイの寸法を確認してください-

print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

両方のアレイの形状を確認してください-

print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

2つの1次元シーケンスの離散線形畳み込みを返すには、Python Numpyでthenumpy.convolve()メソッドを使用します-

print("\nResult....\n",np.convolve(arr1, arr2, mode = 'valid' ))

import numpy as np

# Creating two numpy One-Dimensional array using the array() method
arr1 = np.array([1, 2, 3])
arr2 = np.array([0, 1, 0.5])

# Display the arrays
print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

# To return the discrete linear convolution of two one-dimensional sequences, use the numpy.convolve() method in Python Numpy
print("\nResult....\n",np.convolve(arr1, arr2, mode = 'valid' ))

出力

Array1...
[1 2 3]

Array2...
[0. 1. 0.5]

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(3,)

Shape of Array2...
(3,)

Result....
[2.5]

  1. Pythonで2つの(配列の)ベクトルの外積を返します

    2つのベクトルの外積を計算するには、Python Numpyのnumpy.cross()メソッドを使用します。このメソッドは、ベクトル外積であるcを返します。最初のパラメーターは、最初のベクトルのコンポーネントであるaです。 2番目のパラメーターはbで、2番目のベクトルの成分です。 3番目のパラメーターはaxisaで、ベクトルを定義するaの軸です。デフォルトでは、最後の軸。 4番目のパラメーターはaxisbで、ベクトルを定義するbの軸です。デフォルトでは、最後の軸。 5番目のパラメーターはaxiscで、cの軸には外積ベクトルが含まれています。戻り値がスカラーであるため、両方の入力ベクトルの

  2. Pythonで4Dおよび3D次元の配列のクロネッカー積を入手する

    4Dと3Dの次元配列のクロネッカー積を取得するには、Python Numpyのnumpy.kron()メソッドを使用します。最初の配列によってスケーリングされた2番目の配列のブロックで構成される複合配列であるクロネッカー積を計算します この関数は、aとbの次元数が同じであると想定し、必要に応じて最小の次元の前に1を追加します。 a.shape =(r0、r1、..、rN)およびb.shape =(s0、s1、...、sN)の場合、クロネッカー積は形状(r0 * s0、r1 * s1、...、 rN * SN)。要素は、aとbの要素の積であり、-によって明示的に編成されています。 kron(a