TensorflowとPythonを使用して、テキストのベクトル化をstackoverflowの質問データセットにどのように適用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
例
以下はコードスニペットです-
print("1234 ---> ", int_vectorize_layer.get_vocabulary()[1289]) print("321 ---> ", int_vectorize_layer.get_vocabulary()[313]) print("Vocabulary size is : {}".format(len(int_vectorize_layer.get_vocabulary()))) print("The text vectorization is applied to the training dataset") binary_train_ds = raw_train_ds.map(binary_vectorize_text) print("The text vectorization is applied to the validation dataset") binary_val_ds = raw_val_ds.map(binary_vectorize_text) print("The text vectorization is applied to the test dataset") binary_test_ds = raw_test_ds.map(binary_vectorize_text) int_train_ds = raw_train_ds.map(int_vectorize_text) int_val_ds = raw_val_ds.map(int_vectorize_text) int_test_ds = raw_test_ds.map(int_vectorize_text)
コードクレジット-https://www.tensorflow.org/tutorials/load_data/text
出力
1234 ---> substring 321 ---> 20 Vocabulary size is : 10000 The text vectorization is applied to the training dataset The text vectorization is applied to the validation dataset The text vectorization is applied to the test dataset
説明
-
最後の前処理ステップとして、「TextVectorization」レイヤーがトレーニングデータ、テストデータ、検証データセットに適用されます。
-
Tensorflowを使用して、Pythonを使用して花のデータセットを視覚化するにはどうすればよいですか?
花のデータセットは、「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。データセット全体が繰り返され、最初の数枚の画像のみが表示されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 数千の花の画像を含む花のデータセットを使用します。これには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。 以下のコードを実行するためにGoogleColaboratoryを使用しています。 Goo
-
TensorFlowを使用して、Pythonを使用してテンソルを作成し、メッセージを表示するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。これは非常にスケーラブルであり、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソ