Python
 Computer >> コンピューター >  >> プログラミング >> Python

Tensorflowを使用して、Pythonを使用してstackoverflow質問データセットを構成するにはどうすればよいですか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。

フレームワークは、ディープニューラルネットワークでの作業をサポートします。非常にスケーラブルで、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソースの管理を自動化します。多数の機械学習ライブラリが付属しており、十分にサポートされ、文書化されています。フレームワークには、ディープニューラルネットワークモデルを実行し、それらをトレーニングし、それぞれのデータセットの関連する特性を予測するアプリケーションを作成する機能があります。

「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-

pip install tensorflow

Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりません。これらは、3つの主要な属性を使用して識別できます-

  • ランク −テンソルの次元について説明します。これは、テンソルの順序、または定義されたテンソルの次元数として理解できます。

  • タイプ −テンソルの要素に関連付けられたデータ型について説明します。 1次元、2次元、またはn次元のテンソルにすることができます。

  • −これは行と列を合わせた数です。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。

以下はコードスニペットです-

AUTOTUNE = tf.data.experimental.AUTOTUNE
print("The configure_dataset method is defined")
def configure_dataset(dataset):
   return dataset.cache().prefetch(buffer_size=AUTOTUNE)

print("The function is called on training dataset")
binary_train_ds = configure_dataset(binary_train_ds)
print("The function is called on validation dataset")
binary_val_ds = configure_dataset(binary_val_ds)
print("The function is called on test dataset")
binary_test_ds = configure_dataset(binary_test_ds)

int_train_ds = configure_dataset(int_train_ds)
int_val_ds = configure_dataset(int_val_ds)
int_test_ds = configure_dataset(int_test_ds)

コードクレジット-https://www.tensorflow.org/tutorials/load_data/text

出力

The configure_dataset method is defined
The function is called on training dataset
The function is called on validation dataset
The function is called on test dataset

説明

  • データの読み込み中に入力または出力がブロックされないように、2つの方法を定義することが重要です。

  • 「キャッシュ」方式では、データがディスクからロードされた後でも、データをメモリに保持します。

  • これにより、トレーニング中にデータが邪魔にならないようにします。

  • 「プリフェッチ」メソッドは、トレーニングプロセス中にデータの前処理とモデルの実行をオーバーロードします。


  1. Tensorflowを使用してPythonを使用してデータを視覚化するにはどうすればよいですか?

    花のデータセットがあるとしましょう。花のデータセットは、基本的に花のデータセットにリンクするgoogleAPIを使用してダウンロードできます。 「get_file」メソッドを使用して、APIをパラメーターとして渡すことができます。これが完了すると、データが環境にダウンロードされます。 「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Keras Sequenti

  2. Tensorflowを使用して、Pythonを使用して花のデータセットを視覚化するにはどうすればよいですか?

    花のデータセットは、「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。データセット全体が繰り返され、最初の数枚の画像のみが表示されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 数千の花の画像を含む花のデータセットを使用します。これには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。 以下のコードを実行するためにGoogleColaboratoryを使用しています。 Goo