Python
 Computer >> コンピューター >  >> プログラミング >> Python

Tensorflowを使用して、Pythonを使用したstackoverflow質問データセットでモデルがどの程度うまく機能しているかを確認するにはどうすればよいですか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。

「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-

pip install tensorflow

Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 CollaboratoryはJupyterNotebookの上に構築されています。

以下はコードスニペットです-

print("Testing the model with new data")
inputs = [
   "how do I extract keys from a dict into a list?",
   "debug public static void main(string[] args) {...}",
]
print("Predicting the scores ")
predicted_scores = export_model.predict(inputs)
print("Predicting the labels")
predicted_labels = get_string_labels(predicted_scores)
for input, label in zip(inputs, predicted_labels):
   print("Question is: ", input)
   print("The predicted label is : ", label.numpy())

コードクレジット-https://www.tensorflow.org/tutorials/load_data/text

出力

Testing the model with new data
Predicting the scores
Predicting the labels
Question is: how do I extract keys from a dict into a list?
The predicted label is : b'python'
Question is: debug public static void main(string[] args) {...}
The predicted label is : b'java'

説明

  • テキスト前処理コードがモデル内に存在する場合、モデルを本番環境にエクスポートするのに役立ちます。

  • このようにして、展開が簡素化されます。

  • 「TextVectorization」をモデルの外部で使用すると、非同期CPU処理とバッファリングの実行に役立ちます。


  1. Tensorflowを使用してPythonを使用してデータを視覚化するにはどうすればよいですか?

    花のデータセットがあるとしましょう。花のデータセットは、基本的に花のデータセットにリンクするgoogleAPIを使用してダウンロードできます。 「get_file」メソッドを使用して、APIをパラメーターとして渡すことができます。これが完了すると、データが環境にダウンロードされます。 「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Keras Sequenti

  2. Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン