Tensorflowを使用して、Pythonを使用してモデルをコンパイルおよび適合させるにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。
これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。これは非常にスケーラブルであり、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソースの管理を自動化します。多数の機械学習ライブラリが付属しており、十分にサポートされ、文書化されています。フレームワークには、ディープニューラルネットワークモデルを実行し、それらをトレーニングし、それぞれのデータセットの関連する特性を予測するアプリケーションを作成する機能があります。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Colaboratoryは、JupyterNotebookの上に構築されています。以下はコードスニペットです-
例
print("The vocab_size is actually vocab_size+1 since 0 is used as padding") int_model = create_model(vocab_size=VOCAB_SIZE + 1, num_labels=4) print("The model is compiled") int_model.compile( loss=losses.SparseCategoricalCrossentropy(from_logits=True), optimizer='adam', metrics=['accuracy']) print("The model is fit to the data") history = int_model.fit(int_train_ds, validation_data=int_val_ds, epochs=5)
コードクレジット-https://www.tensorflow.org/tutorials/load_data/text
出力
The vocab_size is actually vocab_size+1 since 0 is used as padding The model is compiled The model is fit to the data Epoch 1/5 188/188 [==============================] - 7s 37ms/step - loss: 1.3020 - accuracy: 0.3877 - val_loss: 0.8041 - val_accuracy: 0.6625 Epoch 2/5 188/188 [==============================] - 5s 25ms/step - loss: 0.7200 - accuracy: 0.7003 - val_loss: 0.5815 - val_accuracy: 0.7685 Epoch 3/5 188/188 [==============================] - 5s 25ms/step - loss: 0.4517 - accuracy: 0.8471 - val_loss: 0.5137 - val_accuracy: 0.8040 Epoch 4/5 188/188 [==============================] - 5s 25ms/step - loss: 0.2709 - accuracy: 0.9311 - val_loss: 0.5091 - val_accuracy: 0.8065 Epoch 5/5 188/188 [==============================] - 5s 25ms/step - loss: 0.1453 - accuracy: 0.9717 - val_loss: 0.5320 - val_accuracy: 0.8025
説明
-
「create_model」メソッドを使用してモデルを作成します。
-
このモデルは、「コンパイル」メソッドを使用してコンパイルされます。
-
このコンパイル済みモデルでは、データをモデルに適合させるために「fit」メソッドが呼び出されます。
-
Pythonを使用してモデル全体を保存するためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。 Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTP
-
Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン