Tensorflowを使用してPythonを使用してIlliadデータセットをトレーニングするにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。
イリアスのデータセットを使用します。このデータセットには、ウィリアムカウパー、エドワード(ダービー伯爵)、サミュエルバトラーの3つの翻訳作品のテキストデータが含まれています。モデルは、1行のテキストが与えられたときに翻訳者を識別するようにトレーニングされています。使用されているテキストファイルは前処理されています。これには、ドキュメントのヘッダーとフッター、行番号、章のタイトルの削除が含まれます。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
例
以下はコードスニペットです-
vocab_size += 2 print("Configure the dataset for better performance") train_data = configure_dataset(train_data) validation_data = configure_dataset(validation_data) print("Train the model") model = create_model(vocab_size=vocab_size, num_labels=3) model.compile( optimizer='adam', loss=losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) print("Fit the training data to the model") history = model.fit(train_data, validation_data=validation_data, epochs=3) print("Finding the accuracy and loss associated with training") loss, accuracy = model.evaluate(validation_data) print("The loss is : ", loss) print("The accuracy is : {:2.2%}".format(accuracy))
コードクレジット-https://www.tensorflow.org/tutorials/load_data/text
出力
Configure the dataset for better performance Train the model Fit the training data to the model Epoch 1/3 697/697 [==============================] - 35s 17ms/step - loss: 0.6891 - accuracy: 0.6736 - val_loss: 0.3718 - val_accuracy: 0.8404 Epoch 2/3 697/697 [==============================] - 8s 11ms/step - loss: 0.3149 - accuracy: 0.8713 - val_loss: 0.3621 - val_accuracy: 0.8422 Epoch 3/3 697/697 [==============================] - 8s 11ms/step - loss: 0.2165 - accuracy: 0.9162 - val_loss: 0.4002 - val_accuracy: 0.8404 Finding the accuracy and loss associated with training 79/79 [==============================] - 1s 2ms/step - loss: 0.4002 - accuracy: 0.8404 The loss is : 0.40021833777427673 The accuracy is : 84.04%
説明
-
モデルは、前処理されたベクトル化されたデータセットでトレーニングされます。
-
これが完了すると、コンパイルされてモデルに適合します。
-
モデルに関連する損失と精度は、「評価」方法を使用して評価されます。
-
このデータはコンソールに表示されます。
-
Tensorflowを使用して、Pythonを使用して花のデータセットを視覚化するにはどうすればよいですか?
花のデータセットは、「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。データセット全体が繰り返され、最初の数枚の画像のみが表示されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 数千の花の画像を含む花のデータセットを使用します。これには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。 以下のコードを実行するためにGoogleColaboratoryを使用しています。 Goo
-
TensorFlowを使用してPythonを使用して線形モデルをトレーニングするにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりま