Tensorflowを使用して、Pythonを使用してIlliadデータセットをダウンロードおよび探索するにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズムや深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。
これらは、3つの主要な属性を使用して識別できます-
-
ランク −テンソルの次元について説明します。これは、テンソルの順序、または定義されたテンソルの次元数として理解できます。
-
タイプ −テンソルの要素に関連付けられたデータ型について説明します。 1次元、2次元、またはn次元のテンソルにすることができます。
-
形 −これは行と列を合わせた数です。
イリアスのデータセットを使用します。このデータセットには、ウィリアムカウパー、エドワード(ダービー伯爵)、サミュエルバトラーの3つの翻訳作品のテキストデータが含まれています。モデルは、1行のテキストが与えられたときに翻訳者を識別するようにトレーニングされています。使用されているテキストファイルは前処理されています。これには、ドキュメントのヘッダーとフッター、行番号、章のタイトルの削除が含まれます。
以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 Collaboratoryは、JupyterNotebookの上に構築されています。以下はコードスニペットです-
例
print("Loading the Illiad dataset") DIRECTORY_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/' FILE_NAMES = ['cowper.txt', 'derby.txt', 'butler.txt'] print("Iterating through the name of the files") for name in FILE_NAMES: text_dir = utils.get_file(name, origin=DIRECTORY_URL + name) parent_dir = pathlib.Path(text_dir).parent print("The list of files in the directory") print(list(parent_dir.iterdir()))
コードクレジット-https://www.tensorflow.org/tutorials/load_data/text
出力
Loading the Illiad dataset Iterating through the name of the files Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/cowper.txt 819200/815980 [==============================] - 0s 0us/step Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/derby.txt 811008/809730 [==============================] - 0s 0us/step Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/butler.txt 811008/807992 [==============================] - 0s 0us/step The list of files in the directory [PosixPath('/root/.keras/datasets/derby.txt'), PosixPath('/root/.keras/datasets/cowper.txt'), PosixPath('/root/.keras/datasets/butler.txt')] [ ]
説明
-
「tf.data.TextLineDataset」は、テキストファイルから例を読み込むために使用されます。
-
「tf.text」はデータを前処理するために使用されます。
-
まず、データセットをダウンロードして探索します。
-
Tensorflowを使用してPythonを使用してデータを視覚化するにはどうすればよいですか?
花のデータセットがあるとしましょう。花のデータセットは、基本的に花のデータセットにリンクするgoogleAPIを使用してダウンロードできます。 「get_file」メソッドを使用して、APIをパラメーターとして渡すことができます。これが完了すると、データが環境にダウンロードされます。 「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? Keras Sequenti
-
Tensorflowを使用して、Pythonを使用して花のデータセットを視覚化するにはどうすればよいですか?
花のデータセットは、「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。データセット全体が繰り返され、最初の数枚の画像のみが表示されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 数千の花の画像を含む花のデータセットを使用します。これには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。 以下のコードを実行するためにGoogleColaboratoryを使用しています。 Goo