Tensorflowを使用して、Pythonを使用したstackoverflow質問データセットでモデルをトレーニングするにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。
複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。
これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。これは非常にスケーラブルであり、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソースの管理を自動化します。多数の機械学習ライブラリが付属しており、十分にサポートされ、文書化されています。フレームワークには、ディープニューラルネットワークモデルを実行し、それらをトレーニングし、それぞれのデータセットの関連する特性を予測するアプリケーションを作成する機能があります。
「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-
pip install tensorflow
Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりません。これらは、3つの主要な属性を使用して識別できます-
-
ランク −テンソルの次元について説明します。これは、テンソルの順序または定義されたテンソルの次元数として理解できます。
-
タイプ −テンソルの要素に関連付けられたデータ型について説明します。 1次元、2次元、またはn次元のテンソルにすることができます。
-
形 −これは行と列を合わせた数です。
Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。
例
以下はコードスニペットです-
print("A bag-of-words linear model is built to train the stackoverflow dataset") binary_model = tf.keras.Sequential([layers.Dense(4)]) binary_model.compile( loss=losses.SparseCategoricalCrossentropy(from_logits=True), optimizer='adam', metrics=['accuracy']) history = binary_model.fit( binary_train_ds, validation_data=binary_val_ds, epochs=10)
コードクレジット-https://www.tensorflow.org/tutorials/load_data/text
出力
A bag-of-words linear model is built to train the stackoverflow dataset Epoch 1/10 188/188 [==============================] - 4s 19ms/step - loss: 1.2450 - accuracy: 0.5243 - val_loss: 0.9285 - val_accuracy: 0.7645 Epoch 2/10 188/188 [==============================] - 1s 3ms/step - loss: 0.8304 - accuracy: 0.8172 - val_loss: 0.7675 - val_accuracy: 0.7895 Epoch 3/10 188/188 [==============================] - 1s 3ms/step - loss: 0.6615 - accuracy: 0.8625 - val_loss: 0.6824 - val_accuracy: 0.8050 Epoch 4/10 188/188 [==============================] - 1s 3ms/step - loss: 0.5604 - accuracy: 0.8833 - val_loss: 0.6291 - val_accuracy: 0.8125 Epoch 5/10 188/188 [==============================] - 1s 3ms/step - loss: 0.4901 - accuracy: 0.9034 - val_loss: 0.5923 - val_accuracy: 0.8210 Epoch 6/10 188/188 [==============================] - 1s 3ms/step - loss: 0.4370 - accuracy: 0.9178 - val_loss: 0.5656 - val_accuracy: 0.8255 Epoch 7/10 188/188 [==============================] - 1s 3ms/step - loss: 0.3948 - accuracy: 0.9270 - val_loss: 0.5455 - val_accuracy: 0.8290 Epoch 8/10 188/188 [==============================] - 1s 3ms/step - loss: 0.3601 - accuracy: 0.9325 - val_loss: 0.5299 - val_accuracy: 0.8295 Epoch 9/10 188/188 [==============================] - 1s 3ms/step - loss: 0.3307 - accuracy: 0.9408 - val_loss: 0.5177 - val_accuracy: 0.8335 Epoch 10/10 188/188 [==============================] - 1s 3ms/step - loss: 0.3054 - accuracy: 0.9472 - val_loss: 0.5080 - val_accuracy: 0.8340
説明
-
ニューラルネットワークは「シーケンシャル」APIを使用して作成されます。
-
「バイナリ」形式でベクトル化されたデータの場合、線形モデルであるbag-of-wordsモデルがトレーニングされます。
-
TensorFlowを使用してPythonを使用して線形モデルをトレーニングするにはどうすればよいですか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。 「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます- pip install tensorflow Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりま
-
Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?
Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン