Python
 Computer >> コンピューター >  >> プログラミング >> Python

ルジャンドル系列を微分し、導関数を設定し、Pythonで各微分にスカラーを乗算します


Legendreシリーズを区別するには、Pythonでpolynomial.laguerre.legder()メソッドを使用します。軸に沿ってm回微分されたルジャンドル級数係数cを返します。各反復で、結果はsclで乗算されます。

最初のパラメーターcは、ルジャンドル級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。

2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであるaxisは、導関数が取得されるanAxisです。 (デフォルト:0)。

ステップ

まず、必要なライブラリをインポートします-

import numpy as np
from numpy.polynomial import legendre as L

係数の配列を作成する-

c = np.array([1,2,3,4])

配列を表示する-

print("Our Array...\n",c)

寸法を確認してください-

print("\nDimensions of our Array...\n",c.ndim)

データ型を取得-

print("\nDatatype of our Array object...\n",c.dtype)

形をとる-

print("\nShape of our Array object...\n",c.shape)

Legendreシリーズを区別するには、Pythonでpolynomial.laguerre.legder()メソッドを使用します-

print("\nResult...\n",L.legder(c, 2, scl = -1))

import numpy as np
from numpy.polynomial import legendre as L

# Create an array of coefficients
c = np.array([1,2,3,4])

# Display the array
print("Our Array...\n",c)

# Check the Dimensions
print("\nDimensions of our Array...\n",c.ndim)

# Get the Datatype
print("\nDatatype of our Array object...\n",c.dtype)

# Get the Shape
print("\nShape of our Array object...\n",c.shape)

# To differentiate a Legendre series, use the polynomial.laguerre.legder() method in Python
print("\nResult...\n",L.legder(c, 2, scl = -1))

出力

Our Array...
   [1 2 3 4]

Dimensions of our Array...
1

Datatype of our Array object...
int64

Shape of our Array object...
(4,)

Result...
   [ 9. 60.]

  1. Hermite_eシリーズを区別し、Pythonで導関数を設定します

    Hermite_eシリーズを区別するには、Pythonでhermite_e.hermeder()メソッドを使用します。最初のパラメーターcは、Hermite_e級数係数の配列です。 cが多次元の場合、異なる軸は、対応するインデックスによって与えられる各軸の次数を持つ異なる変数に対応します。 2番目のパラメーターmは、取られる導関数の数であり、負でない必要があります。 (デフォルト:1)。 3番目のパラメーターsclはスカラーです。各微分はsclで乗算されます。最終結果はscl**mによる乗算です。これは、変数の線形変化で使用するためのものです。 (デフォルト:1)。 4番目のパラメーターであ

  2. Pythonで多項式を微分し、各微分にスカラーを掛けます

    多項式を区別するには、Python Numpyのpolynomial.polyder()メソッドを使用します。軸に沿ってm回微分された多項式係数cを返します。各反復で、結果にsclが乗算されます(スケーリング係数は変数の線形変化で使用するためのものです)。引数cは、各軸に沿った低次から高次までの係数の配列です。たとえば、[1,2,3]は多項式1 + 2 * x + 3 * x ** 2を表し、[[1,2]、[1 、2]]は、axis =0がxで、axis =1がyの場合、1 + 1 * x + 2 * y + 2 * x*yを表します。このメソッドは、導関数の多項式係数を返します。 最初のパ