C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

無向グラフの連結成分を見つけるためのC++プログラム


特定の無向グラフの弱または強接続は、DFSを使用して見つけることができます。これは、この問題のC++プログラムです。

使用する機能

Begin
Function fillorder() = fill stack with all the vertices.
   a) Mark the current node as visited and print it
   b) Recur for all the vertices adjacent to this vertex
   c) All vertices reachable from v are processed by now, push v to Stack
End
Begin
Function DFS() :
   a) Mark the current node as visited and print it
   b) Recur for all the vertices adjacent to this vertex
End

#include <iostream>
#include <list>
#include <stack>
using namespace std;
class G {
   int m;
   list<int> *adj;
   //declaration of functions
   void fillOrder(int n, bool visited[], stack<int> &Stack);
   void DFS(int n, bool visited[]);
   public:
      G(int N); //constructor
      void addEd(int v, int w);
      int print();
      G getTranspose();
};
G::G(int m) {
   this->m = m;
   adj = new list<int> [m];
}
void G::DFS(int n, bool visited[]) {
   visited[n] = true; // Mark the current node as visited and print it
   cout << n << " ";
   list<int>::iterator i;
   //Recur for all the vertices adjacent to this vertex
   for (i = adj[n].begin(); i != adj[n].end(); ++i)
      if (!visited[*i])
         DFS(*i, visited);
}
G G::getTranspose() {
   G g(m);
   for (int n = 0; n< m; n++) {
      list<int>::iterator i;
      for (i = adj[n].begin(); i != adj[n].end(); ++i) {
         g.adj[*i].push_back(n);
      }
   }
   return g;
}
void G::addEd(int v, int w) {
   adj[v].push_back(w); //add w to v's list
}
void G::fillOrder(int v, bool visited[], stack<int> &Stack) {
   visited[v] = true; //Mark the current node as visited and print it
   list<int>::iterator i;
   //Recur for all the vertices adjacent to this vertex
   for (i = adj[v].begin(); i != adj[v].end(); ++i)
      if (!visited[*i])
         fillOrder(*i, visited, Stack);
         Stack.push(v);
}
int G::print() { //print the solution
   stack<int> Stack;
   bool *visited = new bool[m];
   for (int i = 0; i < m; i++)
      visited[i] = false;
      for (int i = 0; i < m; i++)
         if (visited[i] == false)
            fillOrder(i, visited, Stack);
   G graph= getTranspose(); //Create a reversed graph
   for (int i = 0; i < m; i++) //Mark all the vertices as not visited
      visited[i] = false;
   int count = 0;
   //now process all vertices in order defined by Stack
   while (Stack.empty() == false) {
      int v = Stack.top();
      Stack.pop(); //pop vertex from stack
      if (visited[v] == false) {
         graph.DFS(v, visited);
         cout << endl;
      }
      count++;
   }
   return count;
}
int main() {
   G g(5);
   g.addEd(2, 1);
   g.addEd(3, 2);
   g.addEd(1, 0);
   g.addEd(0, 3);
   g.addEd(3, 1);
   cout << "Following are strongly connected components
   in given graph \n";
   if (g.print() > 1) {
      cout << "Graph is weakly connected.";
   } else {
      cout << "Graph is strongly connected.";
   }
   return 0;
}

出力

Following are strongly connected components in given
graph
4
0 1 2 3
Graph is weakly connected.

  1. C++の無向グラフの連結成分すべての最小要素の合計

    この問題では、arr [i]が(i + 1)番目のノードを表すN個の数値の配列arrが与えられます。また、エッジのMペアがあり、uとvはエッジによって接続されたノードを表します。私たちのタスクは、無向グラフのすべての連結成分の最小要素の合計を見つけるプログラムを作成することです。ノードが他のノードに接続されていない場合は、1つのノードを持つコンポーネントとしてカウントします。 問題を理解するために例を見てみましょう 入力 arr[] = {2, 7, 5, 1, 2} m = 2 1 2 4 5 出力 8 説明 以下は上に描かれたグラフです- 2つの接続されたノードと1

  2. すべてのサイクルをC++の無向グラフに出力します

    この問題では、無向グラフが与えられ、グラフに形成されるすべてのサイクルを印刷する必要があります。 無向グラフ 互いに接続されたグラフです。一方向グラフのすべてのエッジは双方向です。無向ネットワークとも呼ばれます。 サイクル グラフのデータ構造は、すべての頂点がサイクルを形成するグラフです。 問題をよりよく理解するための例を見てみましょう- グラフ- 出力- Cycle 1: 2 3 4 5 Cycle 2: 6 7 8 このために、グラフのいくつかのプロパティを利用します。グラフ彩色法を使用して、閉路グラフで発生するすべての頂点に色を付ける必要があります。また、頂点