C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

最小連結グラフの最大合計を見つけるためのC++プログラム


最小限に接続されたグラフが与えられたとします。つまり、エッジを削除するとグラフが切断されます。グラフにはn個の頂点があり、エッジは配列「エッジ」で指定されます。 n個の整数値を含む配列「vertexValues」も提供されています。

ここで、次のことを行います-

  • 各頂点に正の整数を書き込んでから、スコアを計算しようとします。

  • 2つの頂点を接続するエッジがあり、2つの頂点の小さい方の値をエッジに配置します。

  • すべてのエッジ値を加算してスコアを計算します。

頂点に値を設定することで達成できる最大値を見つける必要があります。最大合計値と頂点に書き込まれる値を出力する必要があります。

したがって、入力がn =6のようである場合、エッジ={{1、2}、{2、3}、{2、4}、{4、5}、{3、6}}、vertexValues ={1、 2、3、4、5、6}の場合、出力は15、3 1 2 4 5 6になります。これは、指定された方法で0からn –1までの頂点に値を配置できるためです。31 2 4 5 6 。

これを解決するには、次の手順に従います-

N := 100
Define arrays seq and res of size N.
Define an array tp of size N.
ans := 0
Define a function dfs(), this will take p, q,
   res[p] := seq[c]
   if p is not equal to 0, then:
      ans := ans + seq[c]
   (decrease c by 1)
   for each value x in tp[p], do:
      if x is not equal to q, then:
         dfs(x, p)
for initialize i := 0, when i + 1 < n, update (increase i by 1), do:
   tmp := first value of edges[i]- 1
   temp := second value of edges[i] - 1
   insert temp at the end of tp[tmp]
   insert tmp at the end of tp[temp]
for initialize i := 0, when i < n, update (increase i by 1), do:
   seq[i] := vertexValues[i]
c := n - 1
sort the array seq
dfs(0, 0)
print(ans)
for initialize i := n - 1, when i >= 0, update (decrease i by 1), do:
   print(res[i])

理解を深めるために、次の実装を見てみましょう-

#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
#define N 100
int seq[N], res[N];
vector<int> tp[N];
int ans = 0, c;

void dfs(int p, int q) {
   res[p] = seq[c];
   if(p != 0)
      ans += seq[c];
   c--;
   for(auto x : tp[p]) {
      if(x != q)
         dfs(x, p);
   }
}
void solve(int n, vector<pair<int,int>> edges, int vertexValues[]){
   for(int i = 0; i + 1 < n; i++) {
      int tmp = edges[i].first - 1;
      int temp = edges[i].second - 1;
      tp[tmp].push_back(temp);
      tp[temp].push_back(tmp);
   }
   for(int i = 0; i < n; i++)
      seq[i] = vertexValues[i];
   c = n - 1;
   sort(seq, seq + n);
   dfs(0, 0);
   cout << ans << endl;
   for(int i = n - 1; i >= 0; i--)
      cout << res[i] << " ";
   cout << endl;
}
int main() {
   int n = 6;
   vector<pair<int,int>> edges = {{1, 2}, {2, 3}, {2, 4}, {4, 5},{3, 6}};
   int vertexValues[] = {1, 2, 3, 4, 5, 6};
   solve(n, edges, vertexValues);
   return 0;
}

入力

6, {{1, 2}, {2, 3}, {2, 4}, {4, 5}, {3, 6}}, {1, 2, 3, 4, 5, 6}

出力

15
3 1 2 4 5 6

  1. 与えられたグラフのブリッジエッジの数を見つけるためのC++プログラム

    n個の頂点とm個のエッジを含む重み付けされていない無向グラフが与えられたとします。グラフのブリッジエッジは、グラフを削除するとグラフが切断されるエッジです。与えられたグラフでそのようなグラフの数を見つける必要があります。グラフには、平行なエッジや自己ループは含まれていません。 したがって、入力がn =5、m =6、edges ={{1、2}、{1、3}、{2、3}、{2、4}、{2、5}、{3 、5}}の場合、出力は1になります。 グラフには、{2、4}のブリッジエッジが1つだけ含まれています。 これを解決するには、次の手順に従います- mSize := 100 Define an

  2. グラフから減らすことができるスコアの最大量を見つけるためのC++プログラム

    n個の頂点とm個のエッジを持つ重み付きの無向グラフがあるとします。グラフのスコアは、グラフ内のすべてのエッジの重みの加算として定義されます。エッジの重みは負の値になる可能性があり、それらを削除するとグラフのスコアが増加します。グラフを接続したまま、グラフからエッジを削除して、グラフのスコアを最小にする必要があります。減らすことができるスコアの最大量を見つける必要があります。 グラフは配列edgesで与えられ、各要素は{weight、{vertex1、vertex2}}の形式です。 したがって、入力がn =5、m =6、edges ={{2、{1、2}}、{2、{1、3}}、{1、{2、3}