C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

グラフで強く連結成分を見つけるためのC++プログラム


特定の有向グラフの弱または強接続は、DFSを使用して見つけることができます。これは、この問題のC++プログラムです。

使用する機能

Begin
Function fillorder() = fill stack with all the vertices.
   a) Mark the current node as visited and print it
   b) Recur for all the vertices adjacent to this vertex
   c) All vertices reachable from v are processed by now, push v to Stack
End
Begin
Function DFS() :
   a) Mark the current node as visited and print it
   b) Recur for all the vertices adjacent to this vertex
End

#include <iostream>
#include <list>
#include <stack>
using namespace std;
class G {
   int m;
   list<int> *adj;
   //declaration of functions
   void fillOrder(int n, bool visited[], stack<int> &Stack);
   void DFS(int n, bool visited[]);
   public:
   G(int N); //constructor
   void addEd(int v, int w);
   int print();
   G getTranspose();
};
G::G(int m) {
   this->m = m;
   adj = new list<int> [m];
}
void G::DFS(int n, bool visited[]) {
   visited[n] = true; // Mark the current node as visited and print it
   cout << n << " ";
   list<int>::iterator i;
   //Recur for all the vertices adjacent to this vertex
   for (i = adj[n].begin(); i != adj[n].end(); ++i)
      if (!visited[*i])
         DFS(*i, visited);
}
G G::getTranspose() {
   G g(m);
   for (int n = 0; n< m; n++) {
      list<int>::iterator i;
      for (i = adj[n].begin(); i != adj[n].end(); ++i) {
         g.adj[*i].push_back(n);
      }
   }
   return g;
}
void G::addEd(int v, int w) {
   adj[v].push_back(w); //add w to v's list
}
void G::fillOrder(int v, bool visited[], stack<int> &Stack) {
   visited[v] = true; //Mark the current node as visited and print it
   list<int>::iterator i;
   //Recur for all the vertices adjacent to this vertex
   for (i = adj[v].begin(); i != adj[v].end(); ++i)
      if (!visited[*i])
         fillOrder(*i, visited, Stack);
   Stack.push(v);
}
int G::print() { //print the solution
   stack<int> Stack;
   bool *visited = new bool[m];
   for (int i = 0; i < m; i++)
      visited[i] = false;
   for (int i = 0; i < m; i++)
      if (visited[i] == false)
         fillOrder(i, visited, Stack);
   G graph= getTranspose(); //Create a reversed graph
   for (int i = 0; i < m; i++)//Mark all the vertices as not visited
      visited[i] = false;
   int count = 0;
   //now process all vertices in order defined by Stack
   while (Stack.empty() == false) {
      int v = Stack.top();
      Stack.pop(); //pop vertex from stack
      if (visited[v] == false) {
         graph.DFS(v, visited);
         cout << endl;
      }
      count++;
   }
   return count;
}
int main() {
   G g(5);
   g.addEd(2, 1);
   g.addEd(3, 2);
   g.addEd(1, 0);
   g.addEd(0, 3);
   g.addEd(3, 1);
   cout << "Following are strongly connected components
   in given graph \n";
   if (g.print() > 1) {
      cout << "Graph is weakly connected.";
   } else {
      cout << "Graph is strongly connected.";
   }
   return 0;
}

出力

Following are strongly connected components in given
graph
4
0 1 2 3
Graph is weakly connected.

  1. 有向グラフに対して弱く接続されているか強く接続されているかを確認するC++プログラム

    特定の有向グラフの弱または強接続は、DFSを使用して見つけることができます。これは、この問題のC++プログラムです。 使用する機能 Begin    Function fillorder() = fill stack with all the vertices.    a) Mark the current node as visited and print it    b) Recur for all the vertices adjacent to this vertex    c) All vertices

  2. グラフ行列の逆行列を見つけるためのC++プログラム

    これは、グラフ行列の逆行列を見つけるためのC++プログラムです。行列の逆行列は、行列が非特異である場合にのみ存在します。つまり、行列式は0であってはなりません。行列の逆行列は多くの方法で見つけることができます。ここでは、随伴行列とその行列式を使用して、グラフ行列の逆行列を見つけます。例に含まれる手順 Begin    function INV() to get the inverse of the matrix:    Call function DET().    Call function ADJ().