グラフの頂点連結を見つけるためのC++プログラム
グラフの頂点連結を見つけるには、そのグラフのアーティキュレーションポイントを見つける必要があります。グラフ内のアーティキュレーションポイント(またはカット頂点)は、グラフを削除する(およびグラフを通るエッジ)場合にグラフを切断するポイントです。切断された無向グラフのアーティキュレーションポイントは、接続されたコンポーネントの数を増やす頂点の削除です。
アルゴリズム
Begin We use dfs here to find articulation point: In DFS, a vertex w is articulation point if one of the following two conditions is satisfied. 1) w is root of DFS tree and it has at least two children. 2) w is not root of DFS tree and it has a child x such that no vertex in subtree rooted with w has a back edge to one of the ancestors of w in the tree. End
例
#include<iostream> #include <list> #define N -1 using namespace std; class G { int n; list<int> *adj; //declaration of functions void APT(int v, bool visited[], int dis[], int low[], int par[], bool ap[]); public: G(int n); //constructor void addEd(int w, int x); void AP(); }; G::G(int n) { this->n = n; adj = new list<int>[n]; } //add edges to the graph void G::addEd(int w, int x) { adj[x].push_back(w); //add u to v's list adj[w].push_back(x); //add v to u's list } void G::APT(int w, bool visited[], int dis[], int low[], int par[], bool ap[]) { static int t=0; int child = 0; //initialize child count of dfs tree is 0. //mark current node as visited visited[w] = true; dis[w] = low[w] = ++t; list<int>::iterator i; //Go through all adjacent vertices for (i = adj[w].begin(); i != adj[w].end(); ++i) { int x = *i; //x is current adjacent if (!visited[x]) { child++; par[x] = w; APT(x, visited, dis, low, par, ap); low[w] = min(low[w], low[x]); // w is an articulation point in following cases : // w is root of DFS tree and has two or more children. if (par[w] == N && child> 1) ap[w] = true; // If w is not root and low value of one of its child is more than discovery value of w. if (par[w] != N && low[x] >= dis[w]) ap[w] = true; } else if (x != par[w]) //update low value low[w] = min(low[w], dis[x]); } } void G::AP() { // Mark all the vertices as unvisited bool *visited = new bool[n]; int *dis = new int[n]; int *low = new int[n]; int *par = new int[n]; bool *ap = new bool[n]; for (int i = 0; i < n; i++) { par[i] = N; visited[i] = false; ap[i] = false; } // Call the APT() function to find articulation points in DFS tree rooted with vertex 'i' for (int i = 0; i < n; i++) if (visited[i] == false) APT(i, visited, dis, low, par, ap); //print the articulation points for (int i = 0; i < n; i++) if (ap[i] == true) cout << i << " "; } int main() { cout << "\nArticulation points in first graph \n"; G g1(5); g1.addEd(1, 2); g1.addEd(3, 1); g1.addEd(0, 2); g1.addEd(2, 3); g1.addEd(0, 4); g1.AP(); return 0; }
出力
Articulation points in first graph 0 2
-
グラフ内のスーパー頂点を見つけるためのC++プログラム
n個の頂点を持つグラフが与えられたとします。頂点には1からnの番号が付けられ、配列edgesで指定されたエッジによって接続されます。各頂点には、配列valuesで指定された1からnまでの数値内のx値があります。ここで、グラフからスーパー頂点を見つける必要があります。頂点1からiへの最短経路にi番目の頂点と同じ「x」値を持つ頂点がない場合、頂点iは「スーパー頂点」と呼ばれます。この基準を満たすすべての頂点を印刷します。 したがって、入力がn =5のようである場合、値={1、2、2、1、3}、エッジ={{1、2}、{2、3}、{2、3}、{2、4 }、{4、5}}の場合、出力は1 345に
-
与えられたグラフのブリッジエッジの数を見つけるためのC++プログラム
n個の頂点とm個のエッジを含む重み付けされていない無向グラフが与えられたとします。グラフのブリッジエッジは、グラフを削除するとグラフが切断されるエッジです。与えられたグラフでそのようなグラフの数を見つける必要があります。グラフには、平行なエッジや自己ループは含まれていません。 したがって、入力がn =5、m =6、edges ={{1、2}、{1、3}、{2、3}、{2、4}、{2、5}、{3 、5}}の場合、出力は1になります。 グラフには、{2、4}のブリッジエッジが1つだけ含まれています。 これを解決するには、次の手順に従います- mSize := 100 Define an