C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

行と列を交換することによって生成できる一意の行列の数を見つけるためのC++プログラム


nxn行列があるとします。行列の各要素は一意であり、1〜n 2 の整数です。 。これで、以下の操作を任意の金額と順序で実行できます。

  • 行列にある任意の2つの整数xとyを選択します。ここで、(1≤x

  • 行列にある任意の2つの整数xとyを選択します。ここで、(1≤x

  • x +y≤kであり、値が同じ行と列に存在してはならないことに注意する必要があります。

演算を実行することで取得できる一意の行列の数を見つける必要があります。

したがって、入力がn =3、k =15、mat ={{4、3、6}、{5、9、7}、{1、2、8}}の場合、出力は36になります。

たとえば、選択された2つの値はx=3とy=5です。列が交換された場合の結果の行列は-

になります。
3 4 6
9 5 7
2 1 8

このようにして、36個のそのような一意の行列を取得できます。

これを解決するには、次の手順に従います-

Define a function dfs(), this will take k, arrays ver and visited, one stack s.
   if visited[k] is non-zero, then:
      return
   visited[k] := true
   insert k into s
   for initialize iterator j := start of ver[k], when j is not equal to last element of ver[k], update (increase j by 1), do:
      dfs(*j, ver, visited, s)
Define an array f of size: 51.
f[0] := 1
for initialize i := 1, when i <= 50, update (increase i by 1), do:
   f[i] := (i * f[i - 1]) mod modval
Define an array e of size n
Define an array pk of size n
for initialize i := 0, when i < n, update (increase i by 1), do:
   for initialize j := i + 1, when j < n, update (increase j by 1), do:
      chk := 0
         for initialize l := 0, when l < n, update (increase l by 1), do:
            if (mat[i, l] + mat[j, l]) > k, then:
               chk := 1
               Come out from the loop
         if chk is same as 0, then:
             insert j at the end of pk[i]
             insert i at the end of pk[j]
          chk := 0
          for initialize l := 0, when l < n, update (increase l by 1), do:
             if (mat[l, i] + mat[l, j]) > k, then:
                chk := 1
                Come out from the loop
           if chk is same as 0, then:
               insert j at the end of e[i]
               insert i at the end of e[j]
resa := 1, resb = 1
Define an array v1 of size: n and v2 of size: n.
for initialize i := 0, when i < n, update (increase i by 1), do:
   v1[i] := false
   v2[i] := false
for initialize i := 0, when i < n, update (increase i by 1), do:
   Define one stack s.
   if not v1[i] is non-zero, then:
      dfs(i, pk, v1, s)
      if not s is empty, then:
         resa := resa * (f[size of s])
         resa := resa mod modval
for initialize i := 0, when i < n, update (increase i by 1), do:
   Define one stack s
   if not v2[i] is non-zero, then:
      dfs(i, e, v2, s)
      if not s is empty, then:
         resb := resb * (f[size of s])
         resb := resb mod modval
print((resa * resb) mod modval)

理解を深めるために、次の実装を見てみましょう-

#include <bits/stdc++.h>
using namespace std;
#define modval 998244353
const int INF = 1e9;
void dfs(int k, vector<int> ver[], bool visited[], stack<int> &s) {
   if(visited[k])
      return;
   visited[k] = true;
   s.push(k);
   for(vector<int> :: iterator j = ver[k].begin(); j!=ver[k].end(); j++)
      dfs(*j, ver, visited, s);
}
void solve(int n, int k, vector<vector<int>> mat) {
   int f[51];
   f[0] = 1;
   for(int i = 1; i <= 50; i++) {
      f[i] = (i * f[i-1]) % modval;
   }
   vector<int> e[n];
   vector<int> pk[n];
   for(int i = 0; i < n; i++) {
      for(int j = i + 1;j < n; j++) {
         int chk = 0;
         for(int l = 0; l < n; l++){
            if((mat[i][l] + mat[j][l]) > k) {
               chk = 1;
               break;
            }
         }
         if(chk==0) {
            pk[i].push_back(j);
            pk[j].push_back(i);
         }
         chk = 0;
         for(int l = 0;l < n; l++) {
            if((mat[l][i] + mat[l][j]) > k){
               chk = 1;
               break;
            }
         }
         if(chk == 0) {
            e[i].push_back(j);
            e[j].push_back(i);
        }
      }
   }
   int resa = 1, resb = 1;
   bool v1[n], v2[n];
   for(int i = 0; i < n; i++) {
      v1[i] = false;
      v2[i] = false;
   }
   for(int i = 0;i < n; i++) {
      stack<int> s;
      if(!v1[i]) {
         dfs(i, pk, v1, s);
         if(!s.empty()) {
             resa *= (f[s.size()]) % modval;
             resa %= modval;
         }
      }
   }
   for(int i = 0 ;i < n; i++) {
      stack<int> s;
      if(!v2[i]){
         dfs(i, e, v2, s);
         if(!s.empty()) {
           resb *= (f[s.size()]) % modval;
            resb %= modval;
         }
      }
   }
   cout<< (resa * resb) % modval;
}
int main() {
   int n = 3, k = 15;
   vector<vector<int>> mat = {{4, 3, 6}, {5, 9, 7}, {1, 2, 8}};
   solve(n, k, mat);
   return 0;
}

入力

3, 15, {{4, 3, 6}, {5, 9, 7}, {1, 2, 8}}

出力

36

  1. グラフから減らすことができるスコアの最大量を見つけるためのC++プログラム

    n個の頂点とm個のエッジを持つ重み付きの無向グラフがあるとします。グラフのスコアは、グラフ内のすべてのエッジの重みの加算として定義されます。エッジの重みは負の値になる可能性があり、それらを削除するとグラフのスコアが増加します。グラフを接続したまま、グラフからエッジを削除して、グラフのスコアを最小にする必要があります。減らすことができるスコアの最大量を見つける必要があります。 グラフは配列edgesで与えられ、各要素は{weight、{vertex1、vertex2}}の形式です。 したがって、入力がn =5、m =6、edges ={{2、{1、2}}、{2、{1、3}}、{1、{2、3}

  2. パスを作成するためにグリッドでブロックするセルの数を見つけるためのC++プログラム

    次元h*wのグリッドがあるとします。セル位置(0、0)にロボットがあり、その位置(h-1、w-1)に移動する必要があります。グリッドには、ブロックされたセルとブロックされていないセルの2種類のセルがあります。ロボットはブロックされていないセルを通過できますが、ブロックされたセルを通過することはできません。ロボットは4つの方向に進むことができます。左、右、上、下に移動できます。ただし、ロボットはセルから別のセルに任意の方向に移動する可能性があるため(前のセルを無視して)、1つのパスのみを作成し、そのパスにない他のすべてのセルをブロックする必要があります。 (0、0)から(h -1、w -1)まで