電車で出発地から目的地の駅に到達するために必要な最小時間を見つけるためのC++プログラム
n個のステーションがm個のトラックで接続されているとします。ステーションの名前は1からnです。トラックは双方向であり、ステーションsrcからステーションdestに到達する必要があります。 i番目の鉄道の出発地と目的地の駅は配列「roads」で指定されます。roads[i]の形式は{station1、station2}です。 j番目の駅から、列車は時間kjの倍数で駅に接続されているすべての駅に向けて出発し、各列車は目的地に到達するのにtjの時間を要します。値は配列'departure'で指定され、各要素の形式は{tj、kj}です。ここで、srcからdestに到達するのにかかる最小時間を把握する必要があります。複数の列車を乗り換えることができ、列車の乗り換えにかかる時間はごくわずかです。
したがって、入力がn =4、m =3、src =1、dst =4、roads ={{1、2}、{2、4}、{3、4}}、departure ={{2 、1}、{3、5}、{7、6}}の場合、出力は8になります。
駅1から、時間0で駅2まで電車に乗ります。駅2に到着するのにかかる時間は2です。駅2から、時間5に駅4まで電車に乗ります。駅2に到着するのにかかる時間は3です。所要時間は(5 + 3)=8です。
ステップ
これを解決するには、次の手順に従います-
src := src - 1
dst := dst - 1
Define a new array graph[n] that contains tuples
for initialize i := 0, when i < m, update (increase i by 1), do:
a := first value of roads[i] - 1
b := second value of roads[i] - 1
t := first value of departure[i]
k := second value of departure[i]
add tuple (b, t, k) at the end of graph[a]
add tuple (a, t, k) at the end of graph[b]
Define an array dp of size n initialized with value -9999
Define a priority queue priq that contains pairs
dp[src] := 0
insert pair(-dp[src], src) at the end of priq
while not priq is empty, do:
tuple containing (w, a) := largest value of priq
delete top element from priq
if a is same as dst, then:
return -w
if w < dp[a], then:
Ignore following part, skip to the next iteration
for each v in graph[a], do:
create a tuple containing (b, t, k)
weight := (w - k + 1) / k * k - t
if weight > dp[b], then:
dp[b] := weight
insert pair(weight, b) at the end of priq
return -1 例
理解を深めるために、次の実装を見てみましょう-
#include <bits/stdc++.h>
using namespace std;
int solve(int n, int m, int src, int dst, vector<pair<int, int>> roads, vector<pair<int, int>> departure){
src -= 1;
dst -= 1;
vector<tuple<int, int, int>> graph[n];
int a, b;
int t, k;
for(int i = 0; i < m; i++){
a = roads[i].first - 1;
b = roads[i].second - 1;
t = departure[i].first;
k = departure[i].second;
graph[a].emplace_back(b, t, k);
graph[b].emplace_back(a, t, k);
}
vector<int> dp(n, -9999);
priority_queue<pair<int, int>> priq;
dp[src] = 0;
priq.push(make_pair(-dp[src], src));
int w;
while(not priq.empty()){
tie(w, a) = priq.top();
priq.pop(); if(a == dst){
return -w;
}
if(w < dp[a])
continue;
for(auto &v: graph[a]){
tie(b, t, k) = v;
int weight = (w - k + 1) / k * k - t;
if(weight > dp[b]){
dp[b] = weight;
priq.push(make_pair(weight, b));
}
}
}
return -1;
}
int main() {
int n = 4, m = 3, src = 1, dst = 4;
vector<pair<int, int>>
roads = {{1, 2}, {2, 4}, {3, 4}},
departure = {{2, 1}, {3, 5}, {7, 6}};
cout<< solve(n, m, src, dst, roads, departure);
return 0;
} 入力
4, 3, 1, 4, {{1, 2}, {2, 4}, {3, 4}}, {{2, 1}, {3, 5}, {7, 6}}
出力
8
-
与えられたグラフのブリッジエッジの数を見つけるためのC++プログラム
n個の頂点とm個のエッジを含む重み付けされていない無向グラフが与えられたとします。グラフのブリッジエッジは、グラフを削除するとグラフが切断されるエッジです。与えられたグラフでそのようなグラフの数を見つける必要があります。グラフには、平行なエッジや自己ループは含まれていません。 したがって、入力がn =5、m =6、edges ={{1、2}、{1、3}、{2、3}、{2、4}、{2、5}、{3 、5}}の場合、出力は1になります。 グラフには、{2、4}のブリッジエッジが1つだけ含まれています。 これを解決するには、次の手順に従います- mSize := 100 Define an
-
グラフから減らすことができるスコアの最大量を見つけるためのC++プログラム
n個の頂点とm個のエッジを持つ重み付きの無向グラフがあるとします。グラフのスコアは、グラフ内のすべてのエッジの重みの加算として定義されます。エッジの重みは負の値になる可能性があり、それらを削除するとグラフのスコアが増加します。グラフを接続したまま、グラフからエッジを削除して、グラフのスコアを最小にする必要があります。減らすことができるスコアの最大量を見つける必要があります。 グラフは配列edgesで与えられ、各要素は{weight、{vertex1、vertex2}}の形式です。 したがって、入力がn =5、m =6、edges ={{2、{1、2}}、{2、{1、3}}、{1、{2、3}