プリム(最小スパニングツリー)MSTアルゴリズム
連結グラフG(V、E)があり、すべてのエッジの重みまたはコストが示されています。プリムのアルゴリズムは、グラフGから最小全域木を見つけます。
成長するツリーアプローチです。このアルゴリズムでは、ツリーを開始するためにシード値が必要です。シード頂点は、ツリー全体を形成するように成長します。
この問題は、2つのセットを使用して解決されます。 1つのセットには、すでに選択されているノードが保持され、別のセットには、まだ考慮されていないアイテムが保持されます。シード頂点から、最小エッジコストに基づいて隣接する頂点を取得するため、ノードを1つずつ取得してツリーを成長させます。
-
この問題の時間計算量はO(V2)です。ここで、Vは頂点の数です。
入力 −隣接リスト−
出力-
(0)---(1|1) (0)---(2|3) (0)---(3|4) (1)---(0|1) (1)---(4|2) (2)---(0|3) (3)---(0|4) (4)---(1|2) (4)---(5|2) (5)---(4|2) (5)---(6|3) (6)---(5|3)
アルゴリズム
prims(g:グラフ、t:ツリー、開始)
入力 −グラフg、空白のツリーと「開始」という名前のシード頂点出力:エッジを追加した後のツリー。
Begin define two sets as usedVert, unusedVert usedVert[0] := start and unusedVert[0] := φ for all vertices except start do usedVert[i] := φ unusedVert[i] := i //add all vertices in unused list done while number of vertices in usedVert ≠ V do //V is number of total nodes min := ∞ for all vertices of usedVert array do for all vertices of the graph do if min > cost[i,j] AND i ≠ j then min := cost[i,j] ed := edge between i and j, and cost of ed := min done done unusedVert[destination of ed] := φ add edge ed into the tree t add source of ed into usedVert done Endに編集されました
例(C ++)
#include<iostream>
#define V 7
#define INF 999
using namespace std;
//Cost matrix of the graph
int costMat[V][V] = {
{0, 1, 3, 4, INF, 5, INF},
{1, 0, INF, 7, 2, INF, INF},
{3, INF, 0, INF, 8, INF, INF},
{4, 7, INF, 0, INF, INF, INF},
{INF, 2, 8, INF, 0, 2, 4},
{5, INF, INF, INF, 2, 0, 3},
{INF, INF, INF, INF, 4, 3, 0}
};
typedef struct{
int u, v, cost;
}edge;
class Tree{
int n;
edge edges[V-1]; //as a tree has vertex-1 edges
public:
Tree(){
n = 0;
}
void addEdge(edge e){
edges[n] = e; //add edge e into the tree
n++;
}
void printEdges(){ //print edge, cost and total cost
int tCost = 0;
for(int i = 0; i<n; i++){
cout << "Edge: " << char(edges[i].u+'A') < "--" << char(edges[i].v+'A');
cout << " And Cost: " << edges[i].cost << endl;
tCost += edges[i].cost;
}
cout << "Total Cost: " << tCost << endl;
}
friend void prims(Tree &tre, int start);
};
void prims(Tree &tr, int start){
int usedVert[V], unusedVert[V];
int i, j, min, p;
edge ed;
//initialize
usedVert[0] = start; p = 1;
unusedVert[0] = -1;//-1 indicates the place is empty
for(i = 1; i<V; i++){
usedVert[i] = -1;//all places except first is empty
unusedVert[i] = i;//fill with vertices
}
tr.n = 0;
//get edges and add to tree
while(p != V){ //p is number of vertices in usedVert array
min = INF;
for(i = 0; i<p; i++){
for(j = 0; j<V; j++){
if(unusedVert[j] != -1){
if(min > costMat[i][j] && costMat[i][j] != 0){
//find the edge with minimum cost
//such that u is considered and v is not considered yet
min = costMat[i][j];
ed.u = i; ed.v = j; ed.cost = min;
}
}
}
}
unusedVert[ed.v] = -1;//delete v from unusedVertex
tr.addEdge(ed);
usedVert[p] = ed.u; p++;//add u to usedVertex
}
}
main(){
Tree tr;
prims(tr, 0); //starting node 0
tr.printEdges();
} 出力
(0)---(1|1) (0)---(2|3) (0)---(3|4) (1)---(0|1) (1)---(4|2) (2)---(0|3) (3)---(0|4) (4)---(1|2) (4)---(5|2) (5)---(4|2) (5)---(6|3) (6)---(5|3)
-
データ構造の最小スパニングツリー
スパニングツリー は、最小数のエッジで接続されたすべての頂点を持つ無向グラフのサブセットです。 すべての頂点がグラフで接続されている場合、少なくとも1つのスパニングツリーが存在します。グラフには、複数のスパニングツリーが存在する場合があります。 最小スパニングツリー 最小スパニングツリー(MST) は、接続された重み付き無向グラフのエッジのサブセットであり、すべての頂点を可能な限り最小の合計エッジ重みで接続します。 MSTを導出するには、プリムのアルゴリズムまたはクラスカルのアルゴリズムを使用できます。したがって、この章ではプリムのアルゴリズムについて説明します。 すでに説明したように、
-
Pythonでプリムのアルゴリズムを使用してMSTを見つけるプログラム
グラフが与えられ、そのグラフから「最小スパニングツリー」(MST)を見つけるように求められたとします。グラフのMSTは、すべての頂点が存在して接続され、サブセットにサイクルが存在しない加重グラフのサブセットです。 MSTの合計エッジ重みがグラフから可能な限り最小であるため、MSTは最小と呼ばれます。したがって、ここではプリムのMSTアルゴリズムを使用して、特定のグラフからMSTの合計エッジウェイトを見つけます。 したがって、入力が次のような場合 、頂点の数(n)は4で、開始頂点(s)=3の場合、出力は14になります。 このグラフのMSTは次のようになります- このMSTの合