隣接リスト表現のためのプリムのMST
時間計算量隣接リストの表現はO(E log V)です。
入力と出力
Input: The cost matrix: Output: Edge: A--B And Cost: 1 Edge: B--E And Cost: 2 Edge: A--C And Cost: 3 Edge: A--D And Cost: 4 Edge: E--F And Cost: 2 Edge: F--G And Cost: 3 Total Cost: 15
アルゴリズム
prims(g: Graph, start)
入力- グラフgと「start」という名前のシード頂点
出力- エッジを追加した後のツリー。
Begin create two set B, N add the start node in B set. for all vertices u in graph g do add u in the set N done while B ≠ N do min := ∞ for all vertices u in graph g do if u is in the set B then for all vertices v which are adjacent with u do if v is in (N – B) then if min > cost of uv edge then min := cost of uv edge parent := u node := v done done insert node in the B set add the edge starting from parent to node in the tree done return the tree End
例
#include<iostream> #include<list> #include<set> using namespace std; typedef struct nodes { int dest; int cost; }node; class Graph { int n; list<node> *adjList; private: void showList(int src, list<node> lt) { list<node> :: iterator i; node tempNode; for(i = lt.begin(); i != lt.end(); i++) { tempNode = *i; cout << "(" << src << ")---("<<tempNode.dest << "|"<<tempNode.cost<<") "; } cout << endl; } public: Graph() { n = 0; } Graph(int nodeCount) { n = nodeCount; adjList = new list<node>[n]; } void addEdge(int source, int dest, int cost) { node newNode; newNode.dest = dest; newNode.cost = cost; adjList[source].push_back(newNode); } void displayEdges() { for(int i = 0; i<n; i++) { list<node> tempList = adjList[i]; showList(i, tempList); } } friend Graph primsMST(Graph g, int start); }; set<int> difference(set<int> first, set<int> second) { set<int> :: iterator it; set<int> res; for(it = first.begin(); it != first.end(); it++) { if(second.find(*it) == second.end()) res.insert(*it); //add those item which are not in the second list } return res; //the set (first-second) } Graph primsMST(Graph g, int start) { int n = g.n; set<int> B, N, diff; Graph tree(n); //make tree with same node as graph B.insert(start); //insert start node in the B set for(int u = 0; u<n; u++) { N.insert(u); //add all vertices in the N set } while(B != N) { int min = 9999; //set as infinity int v, par; diff = difference(N, B); //find the set N - B for(int u = 0; u < n; u++) { if(B.find(u) != B.end()) { list<node>::iterator it; for(it = g.adjList[u].begin(); it != g.adjList[u].end(); it++) { if(diff.find(it->dest) != diff.end()) { if(min > it->cost) { min = it->cost; //update cost par = u; v = it->dest; } } } } } B.insert(v); tree.addEdge(par, v, min); tree.addEdge(v, par, min); } return tree; } main() { Graph g(7), tree(7); g.addEdge(0, 1, 1); g.addEdge(0, 2, 3); g.addEdge(0, 3, 4); g.addEdge(0, 5, 5); g.addEdge(1, 0, 1); g.addEdge(1, 3, 7); g.addEdge(1, 4, 2); g.addEdge(2, 0, 3); g.addEdge(2, 4, 8); g.addEdge(3, 0, 4); g.addEdge(3, 1, 7); g.addEdge(4, 1, 2); g.addEdge(4, 2, 8); g.addEdge(4, 5, 2); g.addEdge(4, 6, 4); g.addEdge(5, 0, 5); g.addEdge(5, 4, 2); g.addEdge(5, 6, 3); g.addEdge(6, 4, 4); g.addEdge(6, 5, 3); tree = primsMST(g, 0); tree.displayEdges(); }
出力
Edge: A--B And Cost: 1 Edge: B--E And Cost: 2 Edge: A--C And Cost: 3 Edge: A--D And Cost: 4 Edge: E--F And Cost: 2 Edge: F--G And Cost: 3 Total Cost: 15
-
隣接リストを実装するC++プログラム
グラフの隣接リスト表現は、リンクリスト表現です。この表現では、リストの配列があります。配列のサイズはVです。ここで、Vは頂点の数です。つまり、V個の異なるリストを格納する配列があると言えます。リストヘッダーが頂点uの場合、uの隣接するすべての頂点を保持することを意味します。 隣接リスト表現の複雑さ この表現は、無向グラフの場合はO(V + 2E)を取り、有向グラフの場合はO(V + E)を取ります。エッジの数を増やすと、必要なスペースも増えます。 入力 : 出力 : アルゴリズム add_edge(adj_list、u、v) 入力 :エッジ{u、v}のuとv、およ
-
データ構造の隣接リスト
グラフは非線形のデータ構造です。これは、ノードを使用したデータと、エッジを使用したそれらの関係を表します。グラフGには2つのセクションがあります。頂点とエッジ。頂点はセットVを使用して表され、エッジはセットEとして表されます。したがって、グラフ表記はG(V、E)です。アイデアを得るための1つの例を見てみましょう。 このグラフには、5つの頂点と5つのエッジがあります。エッジが方向付けられます。例として、頂点BとDを接続するエッジを選択した場合、ソース頂点はBで、デスティネーションはDです。したがって、BをDに移動することはできますが、DからBに移動することはできません。 グラフは非線形