DFSを使用して有向グラフの接続性をチェックするC++プログラム
グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。
有向グラフの場合、接続を確認するためにすべてのノードからトラバースを開始します。 1つのエッジに外向きのエッジのみがあり、内向きのエッジがない場合があるため、他の開始ノードからノードにアクセスできなくなります。
この場合、トラバーサルアルゴリズムは再帰的なDFSトラバーサルです。
入力 :グラフの隣接行列
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
出力 :グラフが接続されています。
アルゴリズム
traverse(u、visited)
入力 :開始ノードuと訪問済みノードは、どのノードが訪問されたかをマークします。
出力 :接続されているすべての頂点をトラバースします。
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected(graph)
入力 :グラフ。
出力 :グラフが接続されている場合はtrue。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
サンプルコード
#include<iostream> #define NODE 5 using namespace std; int graph[NODE][NODE] = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}}; void traverse(int u, bool visited[]) { visited[u] = true; //mark v as visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { if(!visited[v]) traverse(v, visited); } } } bool isConnected() { bool *vis = new bool[NODE]; //for all vertex u as start point, check whether all nodes are visible or not for(int u; u < NODE; u++) { for(int i = 0; i<NODE; i++) vis[i] = false; //initialize as no node is visited traverse(u, vis); for(int i = 0; i<NODE; i++) { if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected return false; } } return true; } int main() { if(isConnected()) cout << "The Graph is connected."; else cout << "The Graph is not connected."; }
出力
The Graph is connected.
-
BFSを使用して無向グラフの接続性をチェックするC++プログラム
グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。 無向グラフの場合、1つのノードを選択し、そこからトラバースします。 この場合、トラバーサルアルゴリズムは再帰的なBFSトラバーサルです。 入力 −グラフの隣接行列 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0
-
有向グラフにオイラー閉路が含まれているかどうかを確認するC++プログラム
オイラーサイクル/回路はパスです。これにより、すべてのエッジを1回だけ訪問できます。同じ頂点を複数回使用できます。オイラー回路は、特殊なタイプのオイラーパスです。オイラーパスの開始頂点がそのパスの終了頂点にも接続されている場合、それはオイラー回路と呼ばれます。 グラフがオイラーであるかどうかを確認するには、2つの条件を確認する必要があります- グラフを接続する必要があります。 各頂点の次数と次数は同じである必要があります。 入力 −グラフの隣接行列。 0 1 0 0 0 0 0 1 0 0 0 0 0