有向グラフにオイラー閉路が含まれているかどうかを確認するC++プログラム
オイラーサイクル/回路はパスです。これにより、すべてのエッジを1回だけ訪問できます。同じ頂点を複数回使用できます。オイラー回路は、特殊なタイプのオイラーパスです。オイラーパスの開始頂点がそのパスの終了頂点にも接続されている場合、それはオイラー回路と呼ばれます。
グラフがオイラーであるかどうかを確認するには、2つの条件を確認する必要があります-
-
グラフを接続する必要があります。
-
各頂点の次数と次数は同じである必要があります。
入力 −グラフの隣接行列。
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
出力 −オイラー回路が見つかりました
アルゴリズム
traverse(u、visited)
入力 −開始ノードuと訪問済みノードは、どのノードが訪問されたかをマークします。
出力 −接続されているすべての頂点をトラバースします。
Begin
mark u as visited
for all vertex v, if it is adjacent with u, do
if v is not visited, then
traverse(v, visited)
done
End isConnected(graph)
入力 −グラフ。
出力 −グラフが接続されている場合はtrue。
Begin
define visited array
for all vertices u in the graph, do
make all nodes unvisited
traverse(u, visited)
if any unvisited node is still remaining, then
return false
done
return true
End isEulerCircuit(Graph)
入力 −与えられたグラフ。
出力 −オイラー回路が1つ見つかった場合は真。
Begin if isConnected() is false, then return false define list for inward and outward edge count for each node for all vertex i in the graph, do sum := 0 for all vertex j which are connected with i, do inward edges for vertex i increased increase sum done number of outward of vertex i is sum done if inward list and outward list are same, then return true otherwise return false End
サンプルコード
#include<iostream>
#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{0, 0, 0, 1, 1},
{1, 0, 0, 0, 0},
{0, 0, 1, 0, 0}};
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//for all vertex u as start point, check whether all nodes are visible or not
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
bool isEulerCircuit() {
if(isConnected() == false) { //when graph is not connected
return false;
}
vector<int> inward(NODE, 0), outward(NODE, 0);
for(int i = 0; i<NODE; i++) {
int sum = 0;
for(int j = 0; j<NODE; j++) {
if(graph[i][j]) {
inward[j]++; //increase inward edge for destination
vertex
sum++; //how many outward edge
}
}
outward[i] = sum;
}
if(inward == outward) //when number inward edges and outward edges
for each node is same
return true;
return false;
}
int main() {
if(isEulerCircuit())
cout << "Euler Circuit Found.";
else
cout << "There is no Euler Circuit.";
} 出力
Euler Circuit Found.
-
グラフが強く接続されているかどうかをチェックするC++プログラム
有向グラフでは、1つのコンポーネントの頂点の各ペアの間にパスがある場合、コンポーネントは強く接続されていると言われます。 このアルゴリズムを解決するには、まず、DFSアルゴリズムを使用して各頂点の終了時間を取得し、次に転置されたグラフの終了時間を検索します。次に、頂点をトポロジカルソートの降順で並べ替えます。 入力 :グラフの隣接行列。 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 出力 :以下は、与え
-
DFSを使用して有向グラフの接続性をチェックするC++プログラム
グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。 有向グラフの場合、接続を確認するためにすべてのノードからトラバースを開始します。 1つのエッジに外向きのエッジのみがあり、内向きのエッジがない場合があるため、他の開始ノードからノードにアクセスできなくなります。 この場合、トラバーサルアルゴリズムは再帰的なDFSトラバーサルです。 入力 :グラフの隣接行列 0 1 0 0 0 0 0 1 0