C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

有向グラフにオイラー閉路が含まれているかどうかを確認するC++プログラム


オイラーサイクル/回路はパスです。これにより、すべてのエッジを1回だけ訪問できます。同じ頂点を複数回使用できます。オイラー回路は、特殊なタイプのオイラーパスです。オイラーパスの開始頂点がそのパスの終了頂点にも接続されている場合、それはオイラー回路と呼ばれます。

有向グラフにオイラー閉路が含まれているかどうかを確認するC++プログラム

グラフがオイラーであるかどうかを確認するには、2つの条件を確認する必要があります-

  • グラフを接続する必要があります。

  • 各頂点の次数と次数は同じである必要があります。

入力 −グラフの隣接行列。

0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 1 0 0

出力 −オイラー回路が見つかりました

アルゴリズム

traverse(u、visited)

入力 −開始ノードuと訪問済みノードは、どのノードが訪問されたかをマークします。

出力 −接続されているすべての頂点をトラバースします。

Begin
   mark u as visited
   for all vertex v, if it is adjacent with u, do
      if v is not visited, then
         traverse(v, visited)
   done
End

isConnected(graph)

入力 −グラフ。

出力 −グラフが接続されている場合はtrue。

Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
      traverse(u, visited)
      if any unvisited node is still remaining, then
         return false
   done
   return true
End

isEulerCircuit(Graph)

入力 −与えられたグラフ。

出力 −オイラー回路が1つ見つかった場合は真。

Begin
   if isConnected() is false, then
      return false
   define list for inward and outward edge count for each node
   for all vertex i in the graph, do
      sum := 0
      for all vertex j which are connected with i, do
         inward edges for vertex i increased
         increase sum
      done
      number of outward of vertex i is sum
   done
   if inward list and outward list are same, then
       return true
    otherwise return false
End

サンプルコード

#include<iostream>
#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 0, 0, 0},
   {0, 0, 1, 0, 0},
   {0, 0, 0, 1, 1},
   {1, 0, 0, 0, 0},
   {0, 0, 1, 0, 0}};
void traverse(int u, bool visited[]) {
   visited[u] = true;     //mark v as visited
   for(int v = 0; v<NODE; v++) {
      if(graph[u][v]) {
         if(!visited[v])
            traverse(v, visited);
      }
   }
}
bool isConnected() {
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not
   for(int u; u < NODE; u++) {
      for(int i = 0; i<NODE; i++)
         vis[i] = false;     //initialize as no node is visited
         traverse(u, vis);
      for(int i = 0; i<NODE; i++) {
         if(!vis[i])     //if there is a node, not visited by traversal, graph is not connected
            return false;
      }
   }
   return true;
}
bool isEulerCircuit() {
   if(isConnected() == false) {     //when graph is not connected
      return false;
   }
   vector<int> inward(NODE, 0), outward(NODE, 0);
   for(int i = 0; i<NODE; i++) {
      int sum = 0;
      for(int j = 0; j<NODE; j++) {
         if(graph[i][j]) {
            inward[j]++;     //increase inward edge for destination
            vertex
            sum++;    //how many outward edge
         }
      }
      outward[i] = sum;
   }
   if(inward == outward)      //when number inward edges and outward edges
      for each node is same
         return true;
   return false;
}
int main() {
   if(isEulerCircuit())
      cout << "Euler Circuit Found.";
   else
     cout << "There is no Euler Circuit.";
}

出力

Euler Circuit Found.

  1. グラフが強く接続されているかどうかをチェックするC++プログラム

    有向グラフでは、1つのコンポーネントの頂点の各ペアの間にパスがある場合、コンポーネントは強く接続されていると言われます。 このアルゴリズムを解決するには、まず、DFSアルゴリズムを使用して各頂点の終了時間を取得し、次に転置されたグラフの終了時間を検索します。次に、頂点をトポロジカルソートの降順で並べ替えます。 入力 :グラフの隣接行列。 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 出力 :以下は、与え

  2. DFSを使用して有向グラフの接続性をチェックするC++プログラム

    グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。 有向グラフの場合、接続を確認するためにすべてのノードからトラバースを開始します。 1つのエッジに外向きのエッジのみがあり、内向きのエッジがない場合があるため、他の開始ノードからノードにアクセスできなくなります。 この場合、トラバーサルアルゴリズムは再帰的なDFSトラバーサルです。 入力 :グラフの隣接行列 0 1 0 0 0 0 0 1 0