オイラーの定理を実装するC++プログラム
これは、オイラーの定理の実装を示すC++プログラムです。モジュラ逆数が存在するためには、数とモジュラが互いに素でなければなりません。
アルゴリズム
Begin Take input to find modular multiplicative inverse Take input as modular value Perform inverse array function: modInverse(x + 1, 0); modInverse[1] = 1; for i = 2 to x modInverse[i] = (-(y / i) * modInverse[y mod i]) mod y + y return modInverse End
サンプルコード
#include <iostream> #include <vector> using namespace std; vector<int> inverseArray(int x, int y) { vector<int> modInverse(x + 1, 0); modInverse[1] = 1; for (int i = 2; i <= x; i++) { modInverse[i] = (-(y / i) * modInverse[y % i]) % y + y; } return modInverse; } int main() { vector<int>::iterator it; int a, m; cout<<"Enter number to find modular multiplicative inverse: "; cin>>a; cout<<"Enter Modular Value: "; cin>>m; cout<<inverseArray(a, m)[a]<<endl; }
出力
Enter number to find modular multiplicative inverse: 26 Enter Modular Value: 7 7
-
バブルソートを実装するC++プログラム
バブルソートは、比較ベースのソートアルゴリズムです。このアルゴリズムでは、隣接する要素が比較および交換されて、正しいシーケンスが作成されます。このアルゴリズムは他のアルゴリズムよりも単純ですが、いくつかの欠点もあります。このアルゴリズムは、多数のデータセットには適していません。並べ替えタスクの解決には時間がかかります。 バブルソート手法の複雑さ 時間計算量:最良の場合はO(n)、O(n 2 )平均および最悪の場合 スペースの複雑さ:O(1) Input − A list of unsorted data: 56 98 78 12 30 51 Output &mi
-
基数ソートを実装するC++プログラム
基数ソートは、非比較ソートアルゴリズムです。この並べ替えアルゴリズムは、同じ位置と値を共有する数字をグループ化することにより、整数キーで機能します。基数は、記数法のベースです。 10進法では、基数または基数は10であることがわかっているので、いくつかの10進数を並べ替えるには、数値を格納するために10個の位取りボックスが必要です。 基数ソート手法の複雑さ 時間計算量:O(nk) スペースの複雑さ:O(n + k) Input − The unsorted list: 802 630 20 745 52 300 612 932 78 187 Output &minus