B+ツリーを実装するためのC++プログラム
B +ツリーは、ノードが3つ以上の子を持つことができるという点でバイナリ検索ツリーを一般化したものです。これは基本的に、並べ替えられたデータを維持し、対数時間での順次アクセス、検索、挿入、および削除を可能にする自己平衡ツリーデータ構造です。
これは、各ノードにキーのみが含まれ、下部にリンクされたリーフで追加のレベルが追加されたBツリーと見なすことができます。
アルゴリズム
Begin function insert() to insert the nodes into the tree: Initialize x as root. if x is leaf and having space for one more info then insert a to x. else if x is not leaf, do Find the child of x that is going to to be traversed next. If the child is not full, change x to point to the child. If the child is full, split it and change x to point to one of the two parts of the child. If a is smaller than mid key in the child, then set x as first part of the child. Else second part of the child. End
サンプルコード
#include<iostream> using namespace std; struct BplusTree { int *d; BplusTree **child_ptr; bool l; int n; }*r = NULL, *np = NULL, *x = NULL; BplusTree* init()//to create nodes { int i; np = new BplusTree; np->d = new int[6];//order 6 np->child_ptr = new BplusTree *[7]; np->l = true; np->n = 0; for (i = 0; i < 7; i++) { np->child_ptr[i] = NULL; } return np; } void traverse(BplusTree *p)//traverse tree { cout<<endl; int i; for (i = 0; i < p->n; i++) { if (p->l == false) { traverse(p->child_ptr[i]); } cout << " " << p->d[i]; } if (p->l == false) { traverse(p->child_ptr[i]); } cout<<endl; } void sort(int *p, int n)//sort the tree { int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] >p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } int split_child(BplusTree *x, int i) { int j, mid; BplusTree *np1, *np3, *y; np3 = init(); np3->l = true; if (i == -1) { mid = x->d[2]; x->d[2] = 0; x->n--; np1 = init(); np1->l = false; x->l = true; for (j = 3; j < 6; j++) { np3->d[j - 3] = x->d[j]; np3->child_ptr[j - 3] = x->child_ptr[j]; np3->n++; x->d[j] = 0; x->n--; } for (j = 0; j < 6; j++) { x->child_ptr[j] = NULL; } np1->d[0] = mid; np1->child_ptr[np1->n] = x; np1->child_ptr[np1->n + 1] = np3; np1->n++; r = np1; } else { y = x->child_ptr[i]; mid = y->d[2]; y->d[2] = 0; y->n--; for (j = 3; j <6 ; j++) { np3->d[j - 3] = y->d[j]; np3->n++; y->d[j] = 0; y->n--; } x->child_ptr[i + 1] = y; x->child_ptr[i + 1] = np3; } return mid; } void insert(int a) { int i, t; x = r; if (x == NULL) { r = init(); x = r; } else { if (x->l== true && x->n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } x = x->child_ptr[i]; } else { while (x->l == false) { for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } if ((x->child_ptr[i])->n == 6) { t = split_child(x, i); x->d[x->n] = t; x->n++; continue; } else { x = x->child_ptr[i]; } } } } x->d[x->n] = a; sort(x->d, x->n); x->n++; } int main() { int i, n, t; cout<<"enter the no of elements to be inserted\n"; cin>>n; for(i = 0; i < n; i++) { cout<<"enter the element\n"; cin>>t; insert(t); } cout<<"traversal of constructed B tree\n"; traverse(r); }
出力
enter the no of elements to be inserted 10 enter the element 10 enter the element 20 enter the element 30 enter the element 40 enter the element 50 enter the element 60 enter the element 70 enter the element 80 enter the element 90 enter the element 100 traversal of constructed B tree 10 20 30 40 50 60 70 80 90 100
-
シーザー暗号を実装するC++プログラム
これは、平文の各文字が別の文字に置き換えられて暗号文を形成するモノアルファベット暗号です。これは、換字式暗号方式の最も単純な形式です。 この暗号システムは、一般にシフト暗号と呼ばれます。コンセプトは、各アルファベットを、0から25の間の固定数で「シフト」された別のアルファベットに置き換えることです。 このタイプのスキームでは、送信者と受信者の両方がアルファベットをシフトするための「秘密のシフト番号」に同意します。この0から25までの数字が暗号化の鍵になります。 「シーザー暗号」という名前は、「3シフト」が使用されている場合のシフト暗号を表すために使用されることがあります。 プロセス
-
AVLツリーを実装するためのC++プログラム
AVLツリーは自己平衡二分探索木であり、左右のサブツリーの高さの差がすべてのノードで複数になることはありません。 ツリーの回転は、AVLツリーの要素の順序を妨げることなく構造を変更する操作です。ツリー内で1つのノードを上に移動し、1つのノードを下に移動します。これは、ツリーの形状を変更したり、小さいサブツリーを下に移動したり、大きいサブツリーを上に移動したりして高さを低くしたりするために使用され、多くのツリー操作のパフォーマンスが向上します。回転の方向は、木のノードが移動する側に依存しますが、他の人は、どの子がルートの場所をとるかに依存すると言います。これは、AVLツリーを実装するためのC+