C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

グラフを切断するためにカットするエッジの最小数を見つけるC++プログラム


このプログラムでは、グラフのエッジ接続を見つける必要があります。グラフのグラフのエッジ接続は、それがブリッジであることを意味し、グラフを削除すると切断されます。接続されたコンポーネントの数は、切断された無向グラフのブリッジを削除すると増加します。

関数と擬似コード

Begin
   Function connections() is a recursive function to find out the connections:
   A) Mark the current node un visited.
   B) Initialize time and low value
   C) Go through all vertices adjacent to this
   D) Check if the subtree rooted with x has a connection to one of the ancestors of w.
   If the lowest vertex reachable from subtree under x is below u in DFS tree, then w-x has a connection.
   E) Update low value of w for parent function calls.
End

Con()の関数と擬似コード

Begin
   Function Con() that uses connections():
   A) Mark all the vertices as unvisited.
   B) Initialize par and visited, and connections.
   C) Print the connections between the edges in the graph.
End

#include<iostream>
#include <list>
#define N -1
using namespace std;
class G
{
   //declaration of functions
   int n;
   list<int> *adj;
   void connections(int n, bool visited[], int disc[], int
   low[],
   int par[]);
   public:
      G(int n); //constructor
      void addEd(int w, int x);
      void Con();
};
G::G(int n)
{
   this->n= n;
   adj = new list<int> [n];
}
//add edges to the graph
void G::addEd(int w, int x)
{
   adj[x].push_back(w); //add u to v's list
   adj[w].push_back(x); //add v to u's list
}
void G::connections(int w, bool visited[], int dis[], int low[],
int par[])
{
   static int t = 0;
   //mark current node as visited
   visited[w] = true;
   dis[w] = low[w] = ++t;
   //Go through all adjacent vertices
   list<int>::iterator i;
   for (i = adj[w].begin(); i != adj[w].end(); ++i) {
      int x = *i; //x is current adjacent
      if (!visited[x]) {
         par[x] = w;
         connections(x, visited, dis, low, par);
         low[w] = min(low[w], low[x]);
         // If the lowest vertex reachable from subtree under x is
         below w in DFS tree, then w-x is a connection
         if (low[x] > dis[w])
            cout << w << " " << x << endl;
      }
      else if (x != par[w])
         low[w] = min(low[w], dis[x]);
   }
}
void G::Con()
{
   // Mark all the vertices as unvisited
   bool *visited = new bool[n];
   int *dis = new int[n];
   int *low = new int[n];
   int *par = new int[n];
   for (int i = 0; i < n; i++) {
      par[i] = N;
      visited[i] = false;
   }
   //call the function connections() to find edge
   connections
   for (int i = 0; i < n; i++)
      if (visited[i] == false)
         connections(i, visited, dis, low, par);
}
int main()
{
   cout << "\nConnections in first graph \n";
   G g1(5);
   g1.addEd(1, 2);
   g1.addEd(3, 2);
   g1.addEd(2, 1);
   g1.addEd(0, 1);
   g1.addEd(1, 4);
   g1.Con();
   return 0;
}

出力

Connections in first graph
2 3
1 2
1 4
0 1

  1. 与えられたグラフのブリッジエッジの数を見つけるためのC++プログラム

    n個の頂点とm個のエッジを含む重み付けされていない無向グラフが与えられたとします。グラフのブリッジエッジは、グラフを削除するとグラフが切断されるエッジです。与えられたグラフでそのようなグラフの数を見つける必要があります。グラフには、平行なエッジや自己ループは含まれていません。 したがって、入力がn =5、m =6、edges ={{1、2}、{1、3}、{2、3}、{2、4}、{2、5}、{3 、5}}の場合、出力は1になります。 グラフには、{2、4}のブリッジエッジが1つだけ含まれています。 これを解決するには、次の手順に従います- mSize := 100 Define an

  2. C++で対戦相手を捕まえるために必要な最小ステップ数を見つけるためのプログラム

    [u、v]の形式のツリーエッジのリストがあると仮定します。これは、uとvの間に無向エッジがあることを示します。また、xとyの2つの値があります。ノードxにいて、対戦相手がノードyにいる場合。最初のラウンドでは移動し、次のラウンドでは対戦相手が移動します。対戦相手は、ラウンドで移動しないことを選択できます。対戦相手を捕まえるのに必要な最小ラウンド数を見つける必要があります。 したがって、入力がedges =[[0、1]、[0、2]、[1、3]、[1、4]]、x =0、y =3のような場合、出力は3になります。最初と同じように、ノード0から1に移動します。その後、対戦相手は現在のノード3に留まり