C++で有向グラフが接続されているかどうかを確認します
グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。
有向グラフの場合、接続を確認するためにすべてのノードからトラバースを開始します。 1つのエッジに外向きのエッジのみがあり、内向きのエッジがない場合があるため、他の開始ノードからノードにアクセスできなくなります。
この場合、トラバーサルアルゴリズムは再帰的なDFSトラバーサルです。
入力 −グラフの隣接行列
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
出力 −グラフが接続されています。
アルゴリズム
traverse(u, visited) Input: The start node u and the visited node to mark which node is visited. Output: Traverse all connected vertices. Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End isConnected(graph) Input: The graph. Output: True if the graph is connected. Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
例
#include<iostream> #define NODE 5 using namespace std; int graph[NODE][NODE] = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0} }; void traverse(int u, bool visited[]){ visited[u] = true; //mark v as visited for(int v = 0; v<NODE; v++){ if(graph[u][v]){ if(!visited[v]) traverse(v, visited); } } } bool isConnected(){ bool *vis = new bool[NODE]; //for all vertex u as start point, check whether all nodes are visible or not for(int u; u < NODE; u++){ for(int i = 0; i<NODE; i++) vis[i] = false; //initialize as no node is visited traverse(u, vis); for(int i = 0; i<NODE; i++){ if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected return false; } } return true; } int main(){ if(isConnected()) cout << "The Graph is connected."; else cout << "The Graph is not connected."; }
出力
The Graph is connected.
-
グラフが強く接続されているかどうかをチェックするC++プログラム
有向グラフでは、1つのコンポーネントの頂点の各ペアの間にパスがある場合、コンポーネントは強く接続されていると言われます。 このアルゴリズムを解決するには、まず、DFSアルゴリズムを使用して各頂点の終了時間を取得し、次に転置されたグラフの終了時間を検索します。次に、頂点をトポロジカルソートの降順で並べ替えます。 入力 :グラフの隣接行列。 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 出力 :以下は、与え
-
DFSを使用して有向グラフの接続性をチェックするC++プログラム
グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。 有向グラフの場合、接続を確認するためにすべてのノードからトラバースを開始します。 1つのエッジに外向きのエッジのみがあり、内向きのエッジがない場合があるため、他の開始ノードからノードにアクセスできなくなります。 この場合、トラバーサルアルゴリズムは再帰的なDFSトラバーサルです。 入力 :グラフの隣接行列 0 1 0 0 0 0 0 1 0