Python Seabornのカテゴリ散布図でジッターパラメーターを使用せずにポイントがオーバーラップするのを避けますか?
Seabornを使用します。 Seabornは、データの視覚化に役立つライブラリです。カスタマイズされたテーマと高レベルのインターフェースが付属しています。このインターフェースは、データの種類と、特定のフィルターが適用されたときのデータの動作をカスタマイズおよび制御するのに役立ちます。
「stripplot」関数は、変数の少なくとも1つがカテゴリ型である場合に使用されます。データは、軸の1つに沿って並べ替えられた方法で表されます。ただし、欠点は、特定のポイントが重複することです。これは、変数間の重複を避けるために「ジッター」パラメーターを使用する必要がある場合です。
データセットにランダムなノイズを追加し、カテゴリ軸に沿った値の位置を調整します。ただし、「jitter」パラメータを使用する代わりに、「swarmplot」を使用してカテゴリ散布図を取得できます。
swarmplot関数の構文
seaborn.swarmplot(x, y,data,…)
以下に示されています-
例
import pandas as pd import seaborn as sb from matplotlib import pyplot as plt my_df = sb.load_dataset('iris') sb.swarmplot(x = "species", y = "petal_length", data = my_df) plt.show()
出力
説明
- 必要なパッケージがインポートされます。
- 入力データは、scikitlearnライブラリから読み込まれる「iris_data」です。
- このデータはデータフレームに保存されます。
- 「load_dataset」関数は、虹彩データをロードするために使用されます。
- このデータは、「swarmplot」機能を使用して視覚化されます。
- ここでは、データフレームがパラメータとして提供されています。
- また、x値とy値が指定されます。
- このデータはコンソールに表示されます。
-
Pythonのカテゴリ散布図SeabornLibraryでstripplotを使用しているときに、ポイントが重複しないようにするにはどうすればよいですか?
データの視覚化は、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているのかを理解するのに役立つため、重要なステップです。 Seabornは、データの視覚化に役立つライブラリです。カスタマイズされたテーマと高レベルのインターフェースが付属しています。 処理する必要のある変数が本質的にカテゴリである場合、一般的な散布図、ヒストグラムなどは使用できません。これは、カテゴリ散布図を使用する必要がある場合です。 「stripplot」、「swarmplot」などのプロットは、カテゴリ変数を操作するために使用されます。 「stripplot」関数は、変数の少なくとも1つがカ
-
Seabornライブラリを使用してPythonで散布図を表示するにはどうすればよいですか?
データの視覚化は、実際に数値を調べたり複雑な計算を実行したりすることなく、データで何が起こっているのかを理解するのに役立つため、重要なステップです。 Seabornは、データの視覚化に役立つライブラリです。 散布図は、グラフ上に分散/分散されたデータポイントとしてデータの分布を示します。ドットを使用して、データセットの値を表します。データセットは本質的に数値です。横軸と縦軸のすべてのドットの位置は、単一のデータポイントの値を示します。 これらは、2つの変数間の関係を理解するのに役立ちます。 PythonでSeabornライブラリを使用してこれを実現する方法を理解しましょう- 例 impor