PythonPandas-2つのDataFrame間の珍しい行を見つける
2つのDataFrame間の珍しい行を見つけるには、concat()メソッドを使用します。まず、必要なライブラリをエイリアス-
でインポートしましょう。import pandas as pd
2つの列を持つDataFrame1を作成します-
dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1500, 1100, 800, 1100, 900] } )
2つの列を持つDataFrame2を作成します-
dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1300, 1000, 800, 1100, 800] } )
2つのDataFrame間で一般的でない行を検索し、結果を連結します-
print"\nUncommon rows between two DataFrames...\n",pd.concat([dataFrame1,dataFrame2]).drop_duplicates(keep=False)
例
以下はコードです-
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1500, 1100, 800, 1100, 900] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1300, 1000, 800, 1100, 800] } ) print"\nDataFrame2 ...\n",dataFrame2 # finding uncommon rows between two DataFrames and concat the result print"\nUncommon rows between two DataFrames...\n",pd.concat([dataFrame1,dataFrame2]).drop_duplicates(keep=False)
出力
これにより、次の出力が生成されます-
DataFrame1 ... Car Reg_Price 0 BMW 1000 1 Lexus 1500 2 Audi 1100 3 Tesla 800 4 Bentley 1100 5 Jaguar 900 DataFrame2 ... Car Reg_Price 0 BMW 1000 1 Lexus 1300 2 Audi 1000 3 Tesla 800 4 Bentley 1100 5 Jaguar 800 Uncommon rows between two DataFrames... Car Reg_Price 1 Lexus 1500 2 Audi 1100 5 Jaguar 900 1 Lexus 1300 2 Audi 1000 5 Jaguar 800
-
eval()関数を使用して行の合計を評価する– Python Pandas
eval()関数を使用して、指定した列の行の合計を評価することもできます。まず、Productレコードを使用してDataFrameを作成しましょう- dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"],"Opening_Stock": [300, 700, 1200, 1500],"Closing_Stock": [200, 500, 1
-
Python-PandasDataFrameからnull行を削除する方法
Pandas DataFrameのnull行を削除するには、dropna()メソッドを使用します。以下が、いくつかのNaN、つまりnull値を含むCSVファイルであるとしましょう- read_csv()を使用してCSVファイルを読み取ってみましょう。 CSVはデスクトップにあります- dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv") dropna()-を使用してnull値を削除します dataFrame = dataFrame.dropna() 例 以下は完全なコードです-