デキューを実装するC++プログラム
デキューまたは両端キューは、キューデータ構造の一般化されたバージョンであり、両端で挿入と削除が可能です。
デキューの基本的な操作には、次のようなものがあります-
insert_at_beg() : デキューの先頭にアイテムを挿入します。
insert_at_end() : デキューの後ろにアイテムを挿入します。
delete_fr_beg() : デキューの前からアイテムを削除します。
delete_fr_rear() : デキューの後ろからアイテムを削除します。
以下は、デキューを実装するためのC++プログラムです
アルゴリズム
Begin Declare a class dequeue to declare front f and rear r and following functions: function insert_at_beg(int) to insert item at front: If queue is not completely filled up, insert element at the front and update front and rear Otherwise print overflow. function insert_at_end(int) to insert item at rear: If queue is not completely filled up, insert element at the rear and update front and rear Otherwise print overflow. function delete_fr_beg() to delete item from front: If queue is empty, print underflow otherwise delete the front element and update front. function delete_fr_end() to delete item from end: If queue is empty, print underflow otherwise delete the rear element and update rear. End
サンプルコード
#include<iostream> using namespace std; #define SIZE 10 class dequeue { int a[20],f,r; public: dequeue(); void insert_at_beg(int); void insert_at_end(int); void delete_fr_front(); void delete_fr_rear(); void show(); }; dequeue::dequeue() { f=-1; r=-1; } void dequeue::insert_at_end(int i) { if(r>=SIZE-1) { cout<<"\n insertion is not possible, overflow!!!!"; } else { if(f==-1) { f++; r++; } else { r=r+1; } a[r]=i; cout<<"\nInserted item is"<<a[r]; } } void dequeue::insert_at_beg(int i) { if(f==-1) { f=0; a[++r]=i; cout<<"\n inserted element is:"<<i; } else if(f!=0) { a[--f]=i; cout<<"\n inserted element is:"<<i; } else { cout<<"\n insertion is not possible, overflow!!!"; } } void dequeue::delete_fr_front() { if(f==-1) { cout<<"deletion is not possible::dequeue is empty"; return; } else { cout<<"the deleted element is:"<<a[f]; if(f==r) { f=r=-1; return; } else f=f+1; } } void dequeue::delete_fr_rear() { if(f==-1) { cout<<"deletion is not possible::dequeue is empty"; return; } else { cout<<"the deleted element is:"<<a[r]; if(f==r) { f=r=-1; } else r=r-1; } } void dequeue::show() { if(f==-1) { cout<<"Dequeue is empty"; } else { for(int i=f;i<=r;i++) { cout<<a[i]<<" "; } } } int main() { int c,i; dequeue d; Do//perform switch opeartion { cout<<"\n 1.insert at beginning"; cout<<"\n 2.insert at end"; cout<<"\n 3.show"; cout<<"\n 4.deletion from front"; cout<<"\n 5.deletion from rear"; cout<<"\n 6.exit"; cout<<"\n enter your choice:"; cin>>c; switch(c) { case 1: cout<<"enter the element to be inserted"; cin>>i; d.insert_at_beg(i); break; case 2: cout<<"enter the element to be inserted"; cin>>i; d.insert_at_end(i); break; case 3: d.show(); break; case 4: d.delete_fr_front(); break; case 5: d.delete_fr_rear(); break; case 6: exit(1); break; default: cout<<"invalid choice"; break; } } while(c!=7); }
出力
1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:4 deletion is not possible::dequeue is empty 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:5 deletion is not possible::dequeue is empty 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:1 enter the element to be inserted7 inserted element is:7 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:1 enter the element to be inserted6 insertion is not possible, overflow!!! 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:1 enter the element to be inserted4 insertion is not possible, overflow!!! 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:2 enter the element to be inserted6 Inserted item is6 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:2 enter the element to be inserted4 Inserted item is4 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:3 7 6 4 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:4 the deleted element is:7 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:5 the deleted element is:4 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:1 enter the element to be inserted7 inserted element is:7 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:3 7 6 1.insert at beginning 2.insert at end 3.show 4.deletion from front 5.deletion from rear 6.exit enter your choice:6
-
隣接行列を実装するためのC++プログラム
グラフの隣接行列は、サイズV x Vの正方行列です。VはグラフGの頂点の数です。この行列では、各辺にV個の頂点がマークされています。グラフにiからjの頂点までのエッジがある場合、i thの隣接行列に 行とjth 列は1(または加重グラフの場合はゼロ以外の値)になります。それ以外の場合、その場所は0を保持します。 隣接行列表現の複雑さ: 隣接行列表現は、計算中にO(V2)のスペースを取ります。グラフに最大数のエッジと最小数のエッジがある場合、どちらの場合も必要なスペースは同じになります。 入力: 出力: 0 1 2 3 4
-
隣接リストを実装するC++プログラム
グラフの隣接リスト表現は、リンクリスト表現です。この表現では、リストの配列があります。配列のサイズはVです。ここで、Vは頂点の数です。つまり、V個の異なるリストを格納する配列があると言えます。リストヘッダーが頂点uの場合、uの隣接するすべての頂点を保持することを意味します。 隣接リスト表現の複雑さ この表現は、無向グラフの場合はO(V + 2E)を取り、有向グラフの場合はO(V + E)を取ります。エッジの数を増やすと、必要なスペースも増えます。 入力 : 出力 : アルゴリズム add_edge(adj_list、u、v) 入力 :エッジ{u、v}のuとv、およ