Warshallのアルゴリズムを使用して推移閉包を構築するC++プログラム
有向グラフが指定されている場合は、指定されたグラフのすべての頂点ペア(i、j)について、頂点jが別の頂点iから到達可能かどうかを判断します。到達可能とは、頂点iからjへのパスがあることを意味します。この到達可能性マトリックスは、グラフの推移閉包と呼ばれます。 Warshallアルゴリズムは、特定のグラフGの推移閉包を見つけるために一般的に使用されます。これは、このアルゴリズムを実装するためのC++プログラムです。
アルゴリズム
Begin 1.Take maximum number of nodes as input. 2.For Label the nodes as a, b, c ….. 3.To check if there any edge present between the nodes make a for loop: for i = 97 to less than 97 + number of nodes for j = 97 to less than 97 + number of nodes if edge is present do, adj[i - 97][j - 97] = 1 else adj[i - 97][j - 97] = 0 end loop end loop. 4.To print the transitive closure of graph: for i = 0 to number of nodes c = 97 + i end loop. for i = 0 to number of nodes c = 97 + i; for j = 0 to n_nodes print adj[I][j] end loop end loop End
サンプルコード
#include<iostream> using namespace std; const int n_nodes = 20; int main() { int n_nodes, k, n; char i, j, res, c; int adj[10][10], path[10][10]; cout << "\n\tMaximum number of nodes in the graph :"; cin >>n; n_nodes = n; cout << "\nEnter 'y' for 'YES' and 'n' for 'NO' \n"; for (i = 97; i < 97 + n_nodes; i++) for (j = 97; j < 97 + n_nodes; j++) { cout << "\n\tIs there an edge from " << i << " to " << j << " ? "; cin >>res; if (res == 'y') adj[i - 97][j - 97] = 1; else adj[i - 97][j - 97] = 0; } cout << "\nTransitive Closure of the Graph:\n"; cout << "\n\t\t\t "; for (i = 0; i < n_nodes; i++) { c = 97 + i; cout << c << " "; } cout << "\n\n"; for (int i = 0; i < n_nodes; i++) { c = 97 + i; cout << "\t\t\t" << c << " "; for (int j = 0; j < n_nodes; j++) cout << adj[i][j] << " "; cout << "\n"; } return 0; }
出力
Maximum number of nodes in the graph :4 Enter 'y' for 'YES' and 'n' for 'NO' Is there an edge from a to a ? y Is there an edge from a to b ?y Is there an edge from a to c ? n Is there an edge from a to d ? n Is there an edge from b to a ? y Is there an edge from b to b ? n Is there an edge from b to c ? y Is there an edge from b to d ? n Is there an edge from c to a ? y Is there an edge from c to b ? n Is there an edge from c to c ? n Is there an edge from c to d ? n Is there an edge from d to a ? y Is there an edge from d to b ? n Is there an edge from d to c ? y Is there an edge from d to d ? n Transitive Closure of the Graph: a b c d a 1 1 0 0 b 1 0 1 0 c 1 0 0 0 d 1 0 1 0
-
最適なページ置換アルゴリズムのためのC++プログラム
与えられたページ番号とページサイズ。タスクは、最適なページ置換アルゴリズムを使用してメモリブロックをページに割り当てるときのように、ヒットとミスの数を見つけることです。 最適なページ置換アルゴリズムとは何ですか? 最適なページ置換アルゴリズムは、ページ置換アルゴリズムです。ページ置換アルゴリズムは、どのメモリページを置換するかを決定するアルゴリズムです。最適なページ置換では、実際には実装できませんが、近い将来に参照されないページを置換しますが、これは最適であり、ミスが最小限であり、最適です。 例を使って図式的に説明して理解しましょう。 ここで、1、2、3を割り当てた後、メモリが
-
C ++プログラムを使用してプログラムを起動するにはどうすればよいですか?
ここでは、メモ帳などのサードパーティアプリケーションやC++プログラムを使用したものを起動する方法を説明します。このプログラムは非常に単純で、コマンドプロンプトコマンドを使用してこのタスクを実行できます。 system()関数内でアプリケーション名を渡します。これにより、それに応じて開きます。 例 #include <iostream> using namespace std; int main() { cout >> "Opening Nodepad.exe" >> endl; sy