Treapを実装するC++プログラム
これはTreapを実装するためのC++プログラムです。 Treapデータ構造は、基本的にランダム化された二分探索木です。ここでは、これに対する挿入、削除、および検索操作について検討します。
機能と説明
左回転用の関数rotLeft() | 最初にツリーを回転させてから、新しいルートを設定します。 |
右回転の関数rotRight() | 最初にツリーを回転させてから、新しいルートを設定します。 |
関数insetNod() 再帰的に優先度を付けて特定のキーをtreapに挿入する-
If root = nullptr return data as root. If given data is less then root node, Insert data in left subtree. Rotate left if heap property violated. else Insert data in right subtree. Rotate right if heap property violated.
関数searchNod() 再帰的にtreapのキーを検索するため-
If key is not present return false. If key is present return true. If key is less than root, search in left subtree. Else search in right subtree.
関数deleteNod() 再帰的にtreapからキーを削除するには-
If key is not present return false If key is present return true. If key is less than root, go to left subtree. Else Go to right subtree. If key is found: node to be deleted which is a leaf node deallocate the memory and update root to null. delete root. node to be deleted which has two children if left child has less priority than right child call rotLeft() on root recursively delete the left child else call rotRight() on root recursively delete the right child node to be deleted has only one child find child node deallocate the memory Print the result. End
例
#include <iostream> #include <cstdlib> #include <ctime> using namespace std; struct TreapNod { //node declaration int data; int priority; TreapNod* l, *r; TreapNod(int d) { //constructor this->data = d; this->priority = rand() % 100; this->l= this->r = nullptr; } }; void rotLeft(TreapNod* &root) { //left rotation TreapNod* R = root->r; TreapNod* X = root->r->l; R->l = root; root->r= X; root = R; } void rotRight(TreapNod* &root) { //right rotation TreapNod* L = root->l; TreapNod* Y = root->l->r; L->r = root; root->l= Y; root = L; } void insertNod(TreapNod* &root, int d) { //insertion if (root == nullptr) { root = new TreapNod(d); return; } if (d < root->data) { insertNod(root->l, d); if (root->l != nullptr && root->l->priority > root->priority) rotRight(root); } else { insertNod(root->r, d); if (root->r!= nullptr && root->r->priority > root->priority) rotLeft(root); } } bool searchNod(TreapNod* root, int key) { if (root == nullptr) return false; if (root->data == key) return true; if (key < root->data) return searchNod(root->l, key); return searchNod(root->r, key); } void deleteNod(TreapNod* &root, int key) { //node to be deleted which is a leaf node if (root == nullptr) return; if (key < root->data) deleteNod(root->l, key); else if (key > root->data) deleteNod(root->r, key); //node to be deleted which has two children else { if (root->l ==nullptr && root->r == nullptr) { delete root; root = nullptr; } else if (root->l && root->r) { if (root->l->priority < root->r->priority) { rotLeft(root); deleteNod(root->l, key); } else { rotRight(root); deleteNod(root->r, key); } } //node to be deleted has only one child else { TreapNod* child = (root->l)? root->l: root->r; TreapNod* curr = root; root = child; delete curr; } } } void displayTreap(TreapNod *root, int space = 0, int height =10) { //display treap if (root == nullptr) return; space += height; displayTreap(root->l, space); cout << endl; for (int i = height; i < space; i++) cout << ' '; cout << root->data << "(" << root->priority << ")\n"; cout << endl; displayTreap(root->r, space); } int main() { int nums[] = {1,7,6,4,3,2,8,9,10 }; int a = sizeof(nums)/sizeof(int); TreapNod* root = nullptr; srand(time(nullptr)); for (int n: nums) insertNod(root, n); cout << "Constructed Treap:\n\n"; displayTreap(root); cout << "\nDeleting node 8:\n\n"; deleteNod(root, 8); displayTreap(root); cout << "\nDeleting node 3:\n\n"; deleteNod(root, 3); displayTreap(root); return 0; }
出力
Constructed Treap: 1(12) 2(27) 3(97) 4(46) 6(75) 7(88) 8(20) 9(41) 10(25) Deleting node 8: 1(12) 2(27) 3(97) 4(46) 6(75) 7(88) 9(41) 10(25) Deleting node 3: 1(12) 2(27) 4(46) 6(75) 7(88) 9(41) 10(25)
-
隣接行列を実装するためのC++プログラム
グラフの隣接行列は、サイズV x Vの正方行列です。VはグラフGの頂点の数です。この行列では、各辺にV個の頂点がマークされています。グラフにiからjの頂点までのエッジがある場合、i thの隣接行列に 行とjth 列は1(または加重グラフの場合はゼロ以外の値)になります。それ以外の場合、その場所は0を保持します。 隣接行列表現の複雑さ: 隣接行列表現は、計算中にO(V2)のスペースを取ります。グラフに最大数のエッジと最小数のエッジがある場合、どちらの場合も必要なスペースは同じになります。 入力: 出力: 0 1 2 3 4
-
隣接リストを実装するC++プログラム
グラフの隣接リスト表現は、リンクリスト表現です。この表現では、リストの配列があります。配列のサイズはVです。ここで、Vは頂点の数です。つまり、V個の異なるリストを格納する配列があると言えます。リストヘッダーが頂点uの場合、uの隣接するすべての頂点を保持することを意味します。 隣接リスト表現の複雑さ この表現は、無向グラフの場合はO(V + 2E)を取り、有向グラフの場合はO(V + E)を取ります。エッジの数を増やすと、必要なスペースも増えます。 入力 : 出力 : アルゴリズム add_edge(adj_list、u、v) 入力 :エッジ{u、v}のuとv、およ