C ++
 Computer >> コンピューター >  >> プログラミング >> C ++

有向グラフにオイラーパスが含まれているかどうかを確認するC++プログラム


オイラーパスはパスです。これにより、すべてのエッジを1回だけ訪問できます。同じ頂点を複数回使用できます。この場合、オイラー経路もあるため、オイラー回路を含む1つのグラフも考慮されます。

有向グラフにオイラーパスがあるかどうかを確認するには、これらの条件を確認する必要があります-

  • 単一の頂点anが1つ存在する必要があります ここで(in-degree + 1 =out_degree)
  • 単一の頂点bnが1つ存在する必要があります ここで(in-degree =out_degree + 1)
  • これらのケースのいずれかが失敗した場合、すべての頂点に(in-degree =out_degree)RESTがあり、グラフにはオイラーパスがありません。
    有向グラフにオイラーパスが含まれているかどうかを確認するC++プログラム

頂点bには(in-degree 1、out-degree 2)、頂点cには(in-degree 2、out-degree 1)があります。そして、残りの頂点a、dは(in-degree 2、out-degree 2)、eは(in-degree 1、out-degree 1)を持っています。

入力

グラフの隣接行列。

0 0 1 1 0
1 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 0 0 0 0

出力

オイラーパスが見つかりました。

アルゴリズム

traverse(u、visited)

入力開始ノードuと訪問済みノードを入力して、どのノードが訪問されたかをマークします。

出力接続されているすべての頂点をトラバースします。

Begin
   mark u as visited
   for all vertex v, if it is adjacent with u, do
      if v is not visited, then
      traverse(v, visited)
   done
End

isConnected(graph)

入力:グラフ。

出力:グラフが接続されている場合はTrue。

Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
      traverse(u, visited)
      if any unvisited node is still remaining, then
         return false
      done
   return true
End

hasEulerPath(Graph)

指定されたグラフを入力します。

1つのオイラー回路が見つかったときにTrueを出力します。

Begin
   an := 0
   bn := 0
   if isConnected() is false, then
      return false
   define list for inward and outward edge count for each node
   for all vertex i in the graph, do
      sum := 0
      for all vertex j which are connected with i, do
         inward edges for vertex i increased
         increase sum
      done
      number of outward of vertex i is sum
   done
   if inward list and outward list are same, then
      return true
   for all vertex i in the vertex set V, do
      if inward[i] ≠ outward[i], then
         if inward[i] + 1 = outward[i], then
            an := an + 1
         else if inward[i] = outward[i] + 1, then
            bn := bn + 1
      done
      if an and bn both are 1, then
          return true
      otherwise return false
End

サンプルコード

#include<iostream>
#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 0, 1, 1, 0},
   {1, 0, 1, 0, 0},
   {0, 0, 0, 1, 0},
   {0, 1, 0, 0, 1},
   {1, 0, 0, 0, 0}};
void traverse(int u, bool visited[]) {
   visited[u] = true; //mark v as visited
   for(int v = 0; v<NODE; v++) {
      if(graph[u][v]) {
         if(!visited[v])
            traverse(v, visited);
      }
   }
}
bool isConnected() {
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not
   for(int u; u < NODE; u++) {
      for(int i = 0; i<NODE; i++)
         vis[i] = false; //initialize as no node is visited
         traverse(u, vis);
      for(int i = 0; i<NODE; i++) {
         if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
            return false;
      }
   }
   return true;
}
bool hasEulerPath() {
   int an = 0, bn = 0;
   if(isConnected() == false){ //when graph is not connected
      return false;
   }
   vector<int> inward(NODE, 0), outward(NODE, 0);
   for(int i = 0; i<NODE; i++) {
      int sum = 0;
      for(int j = 0; j<NODE; j++) {
         if(graph[i][j]) {
            inward[j]++; //increase inward edge for destination vertex
            sum++; //how many outward edge
         }
      }
      outward[i] = sum;
   }
   //check the condition for Euler paths
   if(inward == outward) //when number inward edges and outward edges for each node is same
      return true; //Euler Circuit, it has Euler path
   for(int i = 0; i<NODE; i++) {
      if(inward[i] != outward[i]) {
         if((inward[i] + 1 == outward[i])) {
            an++;
         } else if((inward[i] == outward[i] + 1)) {
            bn++;
         }
      }
   }
   if(an == 1 && bn == 1) { //if there is only an, and bn, then this has euler path
      return true;
   }
   return false;
}
int main() {
   if(hasEulerPath())
      cout << "Euler Path Found.";
   else
   cout << "There is no Euler Circuit.";
}

出力

Euler Path Found.

  1. グラフが強く接続されているかどうかをチェックするC++プログラム

    有向グラフでは、1つのコンポーネントの頂点の各ペアの間にパスがある場合、コンポーネントは強く接続されていると言われます。 このアルゴリズムを解決するには、まず、DFSアルゴリズムを使用して各頂点の終了時間を取得し、次に転置されたグラフの終了時間を検索します。次に、頂点をトポロジカルソートの降順で並べ替えます。 入力 :グラフの隣接行列。 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 出力 :以下は、与え

  2. DFSを使用して有向グラフの接続性をチェックするC++プログラム

    グラフの接続性を確認するために、トラバーサルアルゴリズムを使用してすべてのノードをトラバースしようとします。トラバーサルの完了後、アクセスされていないノードがある場合、グラフは接続されていません。 有向グラフの場合、接続を確認するためにすべてのノードからトラバースを開始します。 1つのエッジに外向きのエッジのみがあり、内向きのエッジがない場合があるため、他の開始ノードからノードにアクセスできなくなります。 この場合、トラバーサルアルゴリズムは再帰的なDFSトラバーサルです。 入力 :グラフの隣接行列 0 1 0 0 0 0 0 1 0