指定された頂点の次数がPythonのグラフまたはツリーを表すかどうかを確認します
いくつかの頂点の次数のリストがあるとします。グラフとツリーのどちらを形成しているかを確認する必要があります。
したがって、入力がdeg =[2,2,3,1,1,1]のような場合、出力はTree
になります。
これを解決するには、次の手順に従います-
- vert:=頂点の数
- deg_sum:=すべての頂点のすべての度の値の合計
- 2 *(vert-1)がdeg_sumと同じ場合、
- 「ツリー」を返す
- 「グラフ」を返す
理解を深めるために、次の実装を見てみましょう-
サンプルコード
def solve(deg): vert = len(deg) deg_sum = sum(deg) if 2*(vert-1) == deg_sum: return 'Tree' return 'Graph' deg = [2,2,3,1,1,1] print(solve(deg))
入力
[2,2,3,1,1,1]
出力
Tree
-
与えられたグラフがPythonで2部グラフであるかどうかをチェックするプログラム
無向グラフが1つあるとすると、グラフが2部グラフであるかどうかを確認する必要があります。グラフのすべてのエッジ{u、v}がAに1つのノードuを持ち、Bに別のノードvを持つように、グラフのノードを2つのセットAとBに分割できる場合、グラフは2部グラフであることがわかります。 したがって、入力が次のような場合 次に、出力はTrueになり、[0,4]はセットAにあり、[1,2,3]はセットBにあり、すべてのエッジはAからAまたはBからBではなく、AからBまたはBからAになります。 。 これを解決するために、次の手順に従います- 関数dfs()を定義します。これはソースを取ります
-
特定のバイナリツリーがPythonのヒープであるかどうかを確認します
二分木があるとしましょう。ヒープかどうかを確認する必要があります。ヒープには次のプロパティがあります。ヒープはバイナリツリーになります。そのツリーは完全なツリーである必要があります(つまり、最後を除くすべてのレベルがいっぱいである必要があります)。そのツリーのすべてのノード値は、その子ノード(max-heap)以上である必要があります。 したがって、入力が次のような場合 その場合、出力はtrueになります これを解決するには、次の手順に従います- 関数number_of_nodes()を定義します。これが定着します rootがnullの場合、 0を返す それ以外の場合、