Python
 Computer >> コンピューター >  >> プログラミング >> Python

Tensorflowを使用してデータセットを反復処理し、Pythonを使用してサンプルデータを表示するにはどうすればよいですか?


Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。非常にスケーラブルで、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソースの管理を自動化します。多数の機械学習ライブラリが付属しており、十分にサポートされ、文書化されています。フレームワークには、ディープニューラルネットワークモデルを実行し、それらをトレーニングし、それぞれのデータセットの関連する特性を予測するアプリケーションを作成する機能があります。

「tensorflow」パッケージは、以下のコード行を使用してWindowsにインストールできます-

pip install tensorflow

Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは、多次元配列またはリストに他なりません。これらは、3つの主要な属性を使用して識別できます-

  • ランク −テンソルの次元について説明します。これは、テンソルの順序、または定義されたテンソルの次元数として理解できます。

  • タイプ −テンソルの要素に関連付けられたデータ型について説明します。 1次元、2次元、またはn次元のテンソルにすることができます。

  • −これは行と列を合わせた数です。

以下のコードを実行するためにGoogleColaboratoryを使用しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。

print("Iterating through the training data")
for i, label in enumerate(raw_train_ds.class_names):
   print("Label", i, "maps to", label)
print("The training parameters have been defined")
raw_val_ds = preprocessing.text_dataset_from_directory(
   train_dir,
   batch_size=batch_size,
   validation_split=0.25,
   subset='validation',
   seed=seed)
print("The test dataset is being prepared")
test_dir = dataset_dir/'test'
raw_test_ds = preprocessing.text_dataset_from_directory(
   test_dir, batch_size=batch_size)

コードクレジット-https://www.tensorflow.org/tutorials/load_data/text

出力

Iterating through the training data
Label 0 maps to csharp
Label 1 maps to java
Label 2 maps to javascript
Label 3 maps to python
The training parameters have been defined
Found 8000 files belonging to 4 classes.
Using 2000 files for validation.
The test dataset is being prepared
Found 8000 files belonging to 4 classes.

説明

  • トレーニングデータは繰り返されます。

  • トレーニング、テスト、および検証セットの行数がコンソールに表示されます。

  • データは、「text_dataset_from_directory」ユーティリティを使用して前処理されます。


  1. Tensorflowを使用して、Pythonを使用して花のデータセットを視覚化するにはどうすればよいですか?

    花のデータセットは、「matplotlib」ライブラリを使用して視覚化できます。 「imshow」メソッドは、コンソールに画像を表示するために使用されます。データセット全体が繰り返され、最初の数枚の画像のみが表示されます。 続きを読む: TensorFlowとは何ですか?KerasはTensorFlowとどのように連携してニューラルネットワークを作成しますか? 数千の花の画像を含む花のデータセットを使用します。これには5つのサブディレクトリが含まれ、クラスごとに1つのサブディレクトリがあります。 以下のコードを実行するためにGoogleColaboratoryを使用しています。 Goo

  2. TensorFlowを使用して、Pythonを使用してテンソルを作成し、メッセージを表示するにはどうすればよいですか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 これは、NumPyと多次元配列を使用しているためです。これらの多次元配列は「テンソル」とも呼ばれます。フレームワークは、ディープニューラルネットワークの操作をサポートします。これは非常にスケーラブルであり、多くの一般的なデータセットが付属しています。 GPU計算を使用し、リソ