Python
 Computer >> コンピューター >  >> プログラミング >> Python

TensorflowをEstimatorで使用して、Pythonを使用してモデルをコンパイルするにはどうすればよいですか?


TensorflowをEstimatorで使用して、「train」メソッドを使用してモデルをコンパイルできます。

続きを読む: TensorFlowとは何ですか?また、KerasがTensorFlowと連携してニューラルネットワークを作成する方法は?

Keras Sequential APIを使用します。これは、すべてのレイヤーに1つの入力テンソルと1つの出力テンソルがあるプレーンスタックのレイヤーを操作するために使用されるシーケンシャルモデルの構築に役立ちます。

少なくとも1つの層を含むニューラルネットワークは、畳み込み層と呼ばれます。畳み込みニューラルネットワークを使用して、学習モデルを構築できます。

TensorFlow Textには、TensorFlow2.0で使用できるテキスト関連のクラスとオペレーションのコレクションが含まれています。 TensorFlow Textを使用して、シーケンスモデリングを前処理できます。

Google Colaboratoryを使用して、以下のコードを実行しています。 Google ColabまたはColaboratoryは、ブラウザー上でPythonコードを実行するのに役立ち、構成が不要で、GPU(グラフィックプロセッシングユニット)に無料でアクセスできます。 ColaboratoryはJupyterNotebookの上に構築されています。

Estimatorは、TensorFlowによる完全なモデルの高レベルの表現です。簡単なスケーリングと非同期トレーニング用に設計されています。

モデルは、アイリスデータセットを使用してトレーニングされます。 4つの機能と1つのラベルがあります。

  • がく片の長さ
  • がく片の幅
  • 花びらの長さ
  • 花びらの幅

print("The model is being trained")
classifier.train(input_fn=lambda: input_fn(train, train_y, training=True), steps=5000)

コードクレジット-https://www.tensorflow.org/tutorials/estimator/premade#first_things_first

出力

WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:Layer dnn is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because its dtype defaults to floatx.
If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.
To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/keras/optimizer_v2/adagrad.py:83: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpbhg2uvbr/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 1.1140382, step = 0
INFO:tensorflow:global_step/sec: 312.415
INFO:tensorflow:loss = 0.8781501, step = 100 (0.321 sec)
INFO:tensorflow:global_step/sec: 375.535
INFO:tensorflow:loss = 0.80712265, step = 200 (0.266 sec)
INFO:tensorflow:global_step/sec: 372.712
INFO:tensorflow:loss = 0.7615077, step = 300 (0.268 sec)
INFO:tensorflow:global_step/sec: 368.782
INFO:tensorflow:loss = 0.733555, step = 400 (0.271 sec)
INFO:tensorflow:global_step/sec: 372.689
INFO:tensorflow:loss = 0.6983943, step = 500 (0.268 sec)
INFO:tensorflow:global_step/sec: 370.308
INFO:tensorflow:loss = 0.67940104, step = 600 (0.270 sec)
INFO:tensorflow:global_step/sec: 373.374
INFO:tensorflow:loss = 0.65386146, step = 700 (0.268 sec)
INFO:tensorflow:global_step/sec: 368.335
INFO:tensorflow:loss = 0.63730353, step = 800 (0.272 sec)
INFO:tensorflow:global_step/sec: 371.575
INFO:tensorflow:loss = 0.61313766, step = 900 (0.269 sec)
INFO:tensorflow:global_step/sec: 371.975
INFO:tensorflow:loss = 0.6123625, step = 1000 (0.269 sec)
INFO:tensorflow:global_step/sec: 369.615
INFO:tensorflow:loss = 0.5957534, step = 1100 (0.270 sec)
INFO:tensorflow:global_step/sec: 374.054
INFO:tensorflow:loss = 0.57203, step = 1200 (0.267 sec)
INFO:tensorflow:global_step/sec: 369.713
INFO:tensorflow:loss = 0.56556034, step = 1300 (0.270 sec)
INFO:tensorflow:global_step/sec: 366.202
INFO:tensorflow:loss = 0.547443, step = 1400 (0.273 sec)
INFO:tensorflow:global_step/sec: 361.407
INFO:tensorflow:loss = 0.53326523, step = 1500 (0.277 sec)
INFO:tensorflow:global_step/sec: 367.461
INFO:tensorflow:loss = 0.51837724, step = 1600 (0.272 sec)
INFO:tensorflow:global_step/sec: 364.181
INFO:tensorflow:loss = 0.5281174, step = 1700 (0.275 sec)
INFO:tensorflow:global_step/sec: 368.139
INFO:tensorflow:loss = 0.5139683, step = 1800 (0.271 sec)
INFO:tensorflow:global_step/sec: 366.277
INFO:tensorflow:loss = 0.51073176, step = 1900 (0.273 sec)
INFO:tensorflow:global_step/sec: 366.634
INFO:tensorflow:loss = 0.4949246, step = 2000 (0.273 sec)
INFO:tensorflow:global_step/sec: 364.732
INFO:tensorflow:loss = 0.49381495, step = 2100 (0.274 sec)
INFO:tensorflow:global_step/sec: 365.006
INFO:tensorflow:loss = 0.48916715, step = 2200 (0.274 sec)
INFO:tensorflow:global_step/sec: 366.902
INFO:tensorflow:loss = 0.48790723, step = 2300 (0.273 sec)
INFO:tensorflow:global_step/sec: 362.232
INFO:tensorflow:loss = 0.47671652, step = 2400 (0.276 sec)
INFO:tensorflow:global_step/sec: 368.592
INFO:tensorflow:loss = 0.47324088, step = 2500 (0.271 sec)
INFO:tensorflow:global_step/sec: 371.611
INFO:tensorflow:loss = 0.46822113, step = 2600 (0.269 sec)
INFO:tensorflow:global_step/sec: 362.345
INFO:tensorflow:loss = 0.4621966, step = 2700 (0.276 sec)
INFO:tensorflow:global_step/sec: 362.788
INFO:tensorflow:loss = 0.47817266, step = 2800 (0.275 sec)
INFO:tensorflow:global_step/sec: 368.473
INFO:tensorflow:loss = 0.45853442, step = 2900 (0.271 sec)
INFO:tensorflow:global_step/sec: 360.944
INFO:tensorflow:loss = 0.44062576, step = 3000 (0.277 sec)
INFO:tensorflow:global_step/sec: 370.982
INFO:tensorflow:loss = 0.4331399, step = 3100 (0.269 sec)
INFO:tensorflow:global_step/sec: 366.248
INFO:tensorflow:loss = 0.45120597, step = 3200 (0.273 sec)
INFO:tensorflow:global_step/sec: 371.703
INFO:tensorflow:loss = 0.4403404, step = 3300 (0.269 sec)
INFO:tensorflow:global_step/sec: 362.176
INFO:tensorflow:loss = 0.42405623, step = 3400 (0.276 sec)
INFO:tensorflow:global_step/sec: 363.283
INFO:tensorflow:loss = 0.41672814, step = 3500 (0.275 sec)
INFO:tensorflow:global_step/sec: 363.529
INFO:tensorflow:loss = 0.42626005, step = 3600 (0.275 sec)
INFO:tensorflow:global_step/sec: 367.348
INFO:tensorflow:loss = 0.4089098, step = 3700 (0.272 sec)
INFO:tensorflow:global_step/sec: 363.067
INFO:tensorflow:loss = 0.41276374, step = 3800 (0.275 sec)
INFO:tensorflow:global_step/sec: 364.771
INFO:tensorflow:loss = 0.4112524, step = 3900 (0.274 sec)
INFO:tensorflow:global_step/sec: 363.167
INFO:tensorflow:loss = 0.39261794, step = 4000 (0.275 sec)
INFO:tensorflow:global_step/sec: 362.082
INFO:tensorflow:loss = 0.41160905, step = 4100 (0.276 sec)
INFO:tensorflow:global_step/sec: 364.979
INFO:tensorflow:loss = 0.39620766, step = 4200 (0.274 sec)
INFO:tensorflow:global_step/sec: 363.323
INFO:tensorflow:loss = 0.39696264, step = 4300 (0.275 sec)
INFO:tensorflow:global_step/sec: 361.25
INFO:tensorflow:loss = 0.38196522, step = 4400 (0.277 sec)
INFO:tensorflow:global_step/sec: 365.666
INFO:tensorflow:loss = 0.38667366, step = 4500 (0.274 sec)
INFO:tensorflow:global_step/sec: 361.202
INFO:tensorflow:loss = 0.38149032, step = 4600 (0.277 sec)
INFO:tensorflow:global_step/sec: 365.038
INFO:tensorflow:loss = 0.37832782, step = 4700 (0.274 sec)
INFO:tensorflow:global_step/sec: 366.375
INFO:tensorflow:loss = 0.3726803, step = 4800 (0.273 sec)
INFO:tensorflow:global_step/sec: 366.474
INFO:tensorflow:loss = 0.37167495, step = 4900 (0.273 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5000...
INFO:tensorflow:Saving checkpoints for 5000 into /tmp/tmpbhg2uvbr/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5000...
INFO:tensorflow:Loss for final step: 0.36297452.
<tensorflow_estimator.python.estimator.canned.dnn.DNNClassifierV2 at 0x7fc9983ed470>

説明

  • Estimatorオブジェクトが作成されると、以下のメソッドを呼び出すことができます-
  • モデルはトレーニングされています。
  • トレーニングされたモデルが評価されます。
  • このモデルは予測を行うために使用されます。
  • モデルは再度トレーニングされます。
  • これは、Estimatorのtrainメソッドを呼び出すことによって行われます。

  1. Pythonを使用してモデル全体を保存するためにKerasをどのように使用できますか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。研究や生産目的で使用されます。 Kerasは、Pythonで記述されたディープラーニングAPIです。これは、機械学習の問題を解決するのに役立つ生産的なインターフェースを備えた高レベルのAPIです。 Tensorflowフレームワーク上で実行されます。迅速な実験を支援するために構築されました。非常にスケーラブルで、クロスプラットフォーム機能が付属しています。これは、KerasをTP

  2. Pythonを使用してモデルをプロットするためにKerasをどのように使用できますか?

    Tensorflowは、Googleが提供する機械学習フレームワークです。これは、Pythonと組み合わせて使用​​されるオープンソースのフレームワークであり、アルゴリズム、深層学習アプリケーションなどを実装します。それは研究および生産目的で使用されます。複雑な数学演算をすばやく実行するのに役立つ最適化手法があります。 Tensorは、TensorFlowで使用されるデータ構造です。フロー図のエッジを接続するのに役立ちます。このフロー図は「データフローグラフ」と呼ばれます。テンソルは多次元配列またはリストに他なりません。 Kerasは、プロジェクトONEIROS(オープンエンドの神経電子イン